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Executive summary

This scoping report is the first publication from a 
joint project between the Nuffield Foundation and the 
Nuffield Council on Bioethics. It outlines key findings 
and emerging directions in educational genomic 
research, and what is understood about the processes 
linking genetic differences to variation in phenotypes 
(measurable characteristics) related to education.

We examine how these findings are shaping the direction of further research and 
how close they are to being applied in real-world contexts, highlighting the scientific 
and practical challenges, and touching on some of the ethical issues that arise. This 
report therefore provides a foundation for further exploration of the ethical and 
policy implications of applying genomic insights to education, as well as the research 
gaps identified.

Approach

To inform this report, we carried out a scoping exercise using desk-based research, 
reviewing academic and grey literature, and holding semi-structured discussions 
with key researchers who were identified based on expertise and publications. 
Discussions used open questions to gather perspectives on key scientific, ethical 
and practical insights.

Key scientific insights

Individual differences in social and behavioural phenotypes, including those relevant 
to education such as achievement and mental health, are a consequence of both 
genetic variation and environmental factors (which include social and familial factors), 
and their interplay across development. 

Advances in technologies that enable rapid, low-cost DNA sequencing and 
genotyping, alongside the growing availability of large-scale genomic datasets,  
have made genome-wide association studies (GWASs) possible. These studies 
have identified thousands of genetic variants associated with educationally relevant 
phenotypes. Among these, years spent in education is the most studied social 
phenotype in genomics due to its relative ease of measurement and its strong 
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associations with health and economic outcomes. Other educationally relevant 
phenotypes have been examined using GWASs, but many remain under-examined. 

Although specific genetic associations have been identified, social and behavioural 
phenotypes linked to education are collectively influenced by thousands of genetic 
variants and are therefore highly polygenic. As a result of polygenicity, while GWASs 
have identified numerous genetic associations, much of the genetic contribution to 
educationally relevant phenotypes remains unexplored. GWAS research has also 
revealed that genetic variants associated with one phenotype often link to multiple 
other phenotypes – a phenomenon known as pleiotropy. This helps in understanding 
why some learning, behavioural and mental health difficulties overlap or co-occur. 
However, polygenicity and pleiotropy can make it difficult to interpret genetic 
associations and understand the mechanisms linking genetic variation to differences 
in educational phenotypes.

Environments are themselves also influenced by genetic variation, as an individual’s 
DNA sequence can have an impact on the environments they experience, have access 
to, or select. This overlap between genetic and environmental influences – known as 
gene–environment correlation – complicates efforts to disentangle their respective 
contributions to educational disparities and to determine their relative impacts. 

Data from GWASs have also led to the development of polygenic indices (PGIs). 
Polygenic indices combine the effects of thousands of genetic variants, each with a 
very small impact, to account for some population-level variation without requiring 
additional data. A PGI for number of years in education has been developed, and 
accounts for a proportion of variation comparable to some demographic measures 
(such as household income), though it predicts less variation than prior academic 
achievement. PGIs for other educationally relevant phenotypes have also been created, 
but these typically account for much smaller proportions of individual differences. 

Social and practical challenges

The complexity of genetic influence on educationally relevant phenotypes means 
that interdisciplinary collaboration across the sciences, humanities and social 
sciences is needed to design, conduct and interpret research findings. Collaborative 
approaches will also assist with accurate and responsible communication of 
research findings. Responsible scientific conduct and communication is particularly 
important in educational genomics where misinterpretation and misuse of information 
can embed inequities, promote eugenic ideologies and have other wide-reaching 
sociopolitical ramifications. 

Limited diversity in genomic datasets, and how population level descriptors are used 
in genomic research, also contribute to inequities, as well as misinterpretation of 
findings. The vast majority of GWAS participants are of European genetic ancestral 
descent (genetic ancestry), despite their making up a minority of the global population. 
Genomic findings are not readily extrapolated across diverse communities and 
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populations; if such findings are misinterpreted as being generally applicable, there 
are risks of drawing inaccurate – even harmful – conclusions about the sources of 
difference, and further reinforcing inequities experienced by marginalised and under-
represented groups. New methods have been developed to allow researchers to 
utilise data from multiple populations simultaneously, and initiatives introduced to 
encourage diversification of genomic data. However, progress remains slow and such 
diversification attempts raise their own set of ethical questions, including around 
engagement, barriers to participation and data ownership. 

Limited diversity is an issue in research design as well as in the data used. Beyond 
years spent in education, relevant phenotypes studied to date largely consist of 
mental health and some cognitive measures in adult populations. Greater diversity in, 
and depth of, phenotypes examined beyond these – alongside a fuller range of social 
and environmental factors – are therefore needed for deeper and more holistic 
insights into differences in educational experiences and trajectories. 

Other contextual issues arise when considering the potential for translation of 
genomic insights into education practice and policy. Some of these are posed by 
gaps in knowledge and methodological limitations. Some limitations arising from  
the complexity of polygenicity and pleiotropy, for example, are not surmountable, as 
they are characteristic of the nature of genetic influence. Others can be addressed, 
at least in principle. Greater diversity in genomic and environmental data to address 
some of the extant biases, along with greater understanding of the underpinning 
social and neurobiological mechanisms behind individual differences in learning  
and brain function, may be achieved by further interdisciplinary research. In turn,  
this greater understanding may help to develop a wider range of PGIs with increased 
predictive power, which could form the basis of more robust and equitable PGI-
based predictive tools. The timeframe for overcoming challenges posed by knowledge 
gaps and limitations is, however, uncertain, and each challenge raises its own set of 
ethical considerations which require in-depth deliberation. 

PGIs are a specific example of where questions around translation currently exist. In 
the research context, PGIs can help researchers to untangle the roots of educational 
disparities across generations; investigate whether children most likely to profit from 
a particular environment can be identified; and explore causal processes linking 
certain environments to educational outcomes. However, outside of research 
contexts, they have received less attention, and the scientific and ethical questions 
raised by real-world translation represent a significant gap in extant knowledge. From 
an ethical perspective, the challenges arising from translation into practice remain 
underexplored, including the fundamental ethical question of whether PGIs should 
be translated into education at all. From a practical perspective, one particular issue 
needing further exploration is the imprecise nature of PGIs for making individual-
level predictions about educational outcomes, and the potential impacts arising from 
attempts to do so. This makes their value and translation into policy and practice 
unknown. A greater understanding of the safeguards or boundaries that may render 
translation practically and ethically acceptable would likely be of benefit not only to 
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educators and policymakers, but also to the scientific community in developing the 
scope of future genomic and genetically-informed research.

Growing awareness of, and access to, genetic testing by the general public also serves 
to complicate the landscape. An increase in demand could serve to accelerate the 
translation of PGIs before the scientific and ethical questions have been considered, 
and before appropriate policy has been developed to guide educators. Although 
genomic literacy in the general population is low, PGIs are increasingly available 
commercially via direct-to-consumer genetic testing companies, including for social 
and behavioural phenotypes relevant to education. Further exploration on the 
potential ethical and practical impacts of greater supply and demand of PGIs on 
education practice and policy will therefore be of benefit.

It is, however, unknown how much awareness of and support for PGI-based educational 
interventions currently exists in educational practice – still less how much capacity 
there is to facilitate such interventions in already resource-limited education systems. 
Further exploration of whether education has the understanding, appetite or 
resources to utilise genomic information, and the implications of these for policy, is 
therefore essential.
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1 Introduction 

Genomic research has progressed rapidly in a short 
space of time. The year 2004 marked the publication 
of the near-complete human genome sequence,1 and 
in the intervening two decades scientists have moved 
beyond understanding what the average human 
genome looks like to cataloguing patterns of genomic 
variation – differences in DNA sequence between 
individuals – across human populations.2 

These advances, combined with technological and computational developments, 
have enabled researchers to identify specific genetic variants associated with 
phenotypes that impact or relate to education, providing novel insights into their 
genomic architecture. They have also led to the development of polygenic indices 
(PGIs), which index some of the genetic influences on a phenotype for an individual 
by summing up the cumulative effect of multiple genetic variants which individually 
have a very small impact. PGIs are now available for some educationally relevant 
phenotypes, including how long one spends in education, cognitive function and 
behavioural difficulties. However, it is important to note that educationally relevant 
phenotypes are shaped by both genetic and environmental variation and their 
interplay across development, making it challenging to establish clear causal links. 

This scoping paper is the first publication in a broader collaborative programme of 
work between the Nuffield Foundation’s Education domain and the Nuffield Council 
on Bioethics (NCOB), examining research in genomics and neuroscience and its 
social and ethical implications for education policy and practice. It provides an 
overview of key concepts, genomic methods and research insights, and the wide 
range of ethical issues raised by these developments and potential applications. How 
long a person spends in education is predictive of important social, economic and 
health outcomes,3 so understanding genomic – and environmental – contributions to 
educational disparities is crucial for addressing inequity in society. This report is 

1 International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human 
genome Nature 431: 931–45. 

2 The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation Nature 526: 68–74. 

3 Farquharson C, McNally S, and Tahir I (2024) Education inequalities Oxford Open Economics 3(1) i760–820. 
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primarily scoping the scientific terrain as a first step to developing a fuller consideration 
of the ethical context of both the research and its possible applications. Genetic and 
genomic research raises a wide range of ethical issues, and the area of genomic 
prediction especially, as highlighted in the recent NCOB reports on health-related health-related 
predictionprediction (a collaboration with the Ada Lovelace Institute) and on working towards working towards 
a gold standard of ethics in genomic healthcare and researcha gold standard of ethics in genomic healthcare and research. This contentious 
area requires both an understanding of contemporary scientific practices and 
possibilities, alongside considered ethical deliberations. 

The report pays particular attention to the use of PGIs to untangle the genetic and 
environmental contributions to social and behavioural differences. It also considers 
the scientific utility of using PGIs as tools to identify children who might benefit from 
early access to tailored educational support. Identifying educational and learning 
vulnerabilities before they arise – as a way to help support individuals – has clear and 
understandable appeal, but it raises profound scientific and ethical questions. While 
PGIs can sometimes explain a modest proportion of population-level variation in a 
phenotype, they – like all predictors – are probabilistic and not accurate for predicting 
individual-level outcomes.

Beyond the scientific and ethical debates about the potential of PGI-based individual-
level prediction for educational outcomes, PGI reports are increasingly available and 
accessible in the direct-to-consumer (DTC) market. This raises concerns about how 
such tools might be harnessed and applied in real-world settings, and the potential 
they hold for reinforcing – or creating new forms of – inequities in accountability-
driven educational systems. 

We hope this report will be a useful resource for current and future researchers in 
genomics and education, as well as for policymakers and educational practitioners, 
and others who want to engage in considering the implications of these developments.

https://www.nuffieldbioethics.org/publication/predicting-the-future-of-health/
https://www.nuffieldbioethics.org/publication/predicting-the-future-of-health/
https://www.nuffieldbioethics.org/publication/towards-a-gold-standard-of-ethics-across-genomic-healthcare-and-research-where-are-we/
https://www.nuffieldbioethics.org/publication/towards-a-gold-standard-of-ethics-across-genomic-healthcare-and-research-where-are-we/
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1.1 The scope of the report

This report examines the drivers of, and key insights from, molecular genomic 
research into phenotypes that relate to or impact education. These include time 
spent in education, achievement, general cognitive ability (‘intelligence’), specific 
learning difficulties, mental health conditions and personality traits. For simplicity,  
we use the term ‘phenotype’ to refer to these factors and traits throughout the 
report, while recognising knowledge of the phenotype is limited to the measures 
available to researchers. 

While the report touches on twin study research, its primary focus is on molecular 
genetic research that identifies inherited DNA differences associated with variation 
in phenotypes, and how this knowledge has led to the creation of PGIs4 for 
educationally relevant phenotypes. PGIs represent something of a paradigm shift, 
moving the focus from estimating net genetic influences in populations to estimating 
an individual’s genomic likelihood, compared with others in the population, of exhibiting 
a specific phenotype. 

Like other predictors of educational phenotypes, PGIs account for some of the 
variation observed between individuals but are imprecise tools for making predictions 
at the individual level. Also, the mechanisms and processes through which PGIs 
influence specific phenotypes remain largely unknown, and their predictive accuracy 
diminishes when applied to populations different from those studied in the original 
‘discovery’ research. As a result, many scientists consider PGIs to be useful primarily 
at the population level, where they can serve as research tools to tackle genetic 
confounding and to explore the nature of relationships between environmental and 
social factors and differences in educational outcomes. 

Outside of these academic discussions, however, PGIs are becoming increasingly 
available and accessible from DTC companies.5 It is plausible that a PGI for time 
spent in education – or another social or behavioural phenotype relevant to education 
– could soon be offered directly to consumers and used in ways that are inappropriate 
or even harmful.6 This prospect is a further motivator for our work to map the 
scientific and ethical challenges across genomics and neuroscience in education so 
that societal and individual harms and benefits can be thoroughly understood. 

It is important to acknowledge upfront the limitations of phenotypes used in educational 
genomic research. Phenotypes such as educational attainment, achievement and 

4 In line with recommendations, we use the term ‘PGI’ instead of ‘polygenic score’ or ‘polygenic risk score’ so as not to 
imply a value judgement where one is not intended. See Becker J, Burik CAP, Goldman G, et al (2021) Resource 
profile and user guide of the Polygenic Index Repository Nature Human Behaviour 5: 1744–58. 

5 Park JK and Lu CY (2023) Polygenic scores in the direct-to-consumer setting: challenges and opportunities for a 
new era in consumer genetic testing Journal Personalized Medicine 13(4): 573.

6 De Hemptinne MC and Posthuma D (2023) Addressing the ethical and societal challenges posed by genome-wide 
association studies of behavioral and brain-related traits Nature Neuroscience 26(6): 932–41.
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general cognitive ability represent only one dimension of schooling, are measured 
with error and in some instances may be a proxy for the ‘real’ phenotype of interest. 
For example, in genomic research, ‘number of years of formal schooling’ is often used 
as a proxy for educational attainment, a metric that does not necessarily reflect 
achievement or ability; that overlaps with socioeconomic factors which may not have 
been controlled for; and in some respects can be considered as an input rather than 
an outcome measure. 

This report does not explicitly seek to delineate ethical concerns that apply specifically 
to educational genomic research or genomic research more generally, such as the 
collection, storage and management of genomic data, privacy and consent.7 Some of 
these concerns have been outlined in other NCOB reports and remain a key part of 
our ongoing work on genomics and neuroscience in education. While it is impossible 
to ignore these ethical concerns, this report provides an initial overview of some key 
issues, with more in-depth consideration to follow in future work. The report aims to 
provide a valuable foundation for informed, evidence-based conversations among 
stakeholders about the proposed applications of PGIs in research and in practice, 
and the ethical issues therein. Our hope is that by laying out the scientific complexities 
and limitations in this way, and by highlighting some of the key ethical considerations, 
the report will be useful to researchers, educational professionals and policymakers, 
and will guide discussions on whether genomic information for educationally relevant 
phenotypes might be used responsibly in the real world.

1.2 How the report was informed

To inform this report, we carried out a scoping exercise using desk-based research, 
reviewing academic and grey literature, and holding semi-structured discussions 
with key academic researchers who were identified based on research outputs. The 
researchers identified had a diverse range of perspectives on how current knowledge 
of genomic contributions to social and behavioural phenotypes may impact educational 
research, practice and policy. The researchers and their affiliations are listed at the 
end of the report. 

The discussions used open questions to gather perspectives on the key scientific 
and ethical insights. 

7 Oliva A, Kaphle A, Reguant R, et al (2024) Future-proofing genomic data and consent management: a 
comprehensive review of technology innovations GigaScience 13: giae021.
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1.3 Report structure 

The report is written to be read sequentially, but readers may choose to focus on 
specific sections that are more relevant to them. Each section contains key points at 
the start. Ethical questions raised by the use, interpretation and application of genomic 
data are highlighted throughout. 

As far as possible, we have minimised the use of scientific terminology and technical 
terms. However, some terms are necessary as they have a very specific meaning. 
When these terms appear first in each section, they are indicated in bold and explained 
in the accompanying glossary.

For the interested reader, we also provide more detailed information on DNA  
(Annex 1Annex 1) and DNA sequence variation and genotyping (Annex 2Annex 2), heritability  
(Annex 3Annex 3), genome-wide association studies (GWASs) (Annex 4Annex 4), and polygenic 
indices (Annex 5Annex 5). These annexes are designed to be stand-alone and can be 
skipped if preferred. 

Section 2Section 2 introduces the basics of DNA, genetic variation, GWASs and PGIs. It also 
explains the scientific rationale behind GWASs and how associations between 
genetic variants and phenotypes should be interpreted. 

Section 3Section 3 summarises the main drivers of discovery research, the current knowledge 
of specific genomic contributions to educationally relevant phenotypes, and ethical 
issues identified as a result of these advancements. 

Section 4Section 4 explores the opportunities and challenges in the translation of educational 
genomic research findings. It outlines how PGIs are being used as a methodological 
tool to investigate the interconnected influences of genes and environment, and to 
examine causal processes linking genomic and environmental factors to educational 
outcomes. It also examines the rationale for using PGIs as predictive tools to identify 
individuals at higher or lower likelihood of social or behavioural difficulties. 

Section 5Section 5 considers the implications of PGIs for research, education practice and 
policy, highlighting key scientific, practical and ethical challenges across contexts, 
identifying areas where further exploration is needed both to fill gaps in knowledge 
and to properly consider whether (and in what circumstances) translation into policy 
and practice might be ethically undertaken.
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 2 DNA, genetic  
variation and genomic 
research methods 

Key messages 

• For complex phenotypes, individual differences are a result of a multitude of 
both genetic and environmental influences. 

• Genome-wide association studies (GWASs) can identify genetic variants 
that correlate with individual differences in a phenotype of interest. 

• The results of a GWAS are sensitive to the characteristics of the population 
studied, including patterns of genetic variation and environmental factors, as 
well as how the phenotype is measured.

• The results of a GWAS can be used to create individual scores, called 
polygenic indices (PGIs), which estimate some of an individual’s genomic 
liability towards a given phenotype.

• Genetic associations, and by extension PGIs, are not immune to confounding 
and can pick up influences from other factors that contribute to human 
variation, including the environment.

• The nature of the associations between genetic variation and a given 
phenotype are generally very difficult to determine. 

• Genetically homogeneous populations from western societies of limited 
diversity are over-represented in GWASs. As a result, insights from current 
GWASs do not apply to all people equally.

One of the primary goals of genomic research is to explore whether and how  
genetic variation contributes to differences in a phenotype within a population.  
In this section we outline some of the key molecular methods and statistical tools 
used in genomic research, along with their challenges, and explain how the results  
of GWAS analyses are used to construct PGIs. We expand on some common 
misconceptions in the interpretation of genomic and genetically informed research, 

Continued > >> >
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and on why the lack of diversity in genomic research poses a scientific and ethical 
barrier to translation. 

This section serves as a technical primer. Readers already familiar with DNA, genetic 
variation, GWASs and PGIs may wish to skip ahead to Section 3Section 3. For those less familiar 
with these topics – particularly for those seeking to better interpret and engage with 
findings from genomic research as it relates to education – we hope that this section 
provides a useful introduction.

2.1 A note on ethical vigilance

Genomic research into individual differences in social measures and human behaviour, 
such as intelligence and personality, is controversial.8 This is rooted partly in the 
historical development and use of genetic research in the early twentieth century, 
when eugenic social policies and laws were used to justify human rights violations 
and even genocide, all aimed at ‘improving’ the human gene pool and eradicating 
so-called undesirable traits and people.9 

We acknowledge the legacy of these practices and their continued importance in 
shaping contemporary educational genomic research. This underscores the need 
for critical reflection and ethical vigilance to avoid repeating past mistakes. In this 
context, educational genomics requires ethical scrutiny to ensure that research 
promotes fairness and equity, and that findings are not misinterpreted or used – 
deliberately or not – to cause harm to individuals, groups or society.10 As outlined 
later in this report, risks include genetic discrimination, stigmatisation and fuelling 
harmful practices or ideologies.11 

While the report focuses on the genetic contributions to individual differences in 
social and behavioural phenotypes related to education, genetic contributions are 
not the only source of these differences. A particular concern identified during the 
writing of this report is that focusing too much on genomic factors may risk 
overlooking the importance of social, cultural and environmental factors in influencing 
disparities in educational outcomes, and the recasting of structural and historical 
inequities as biological characteristics of individuals.

8 Comfort N (2018) Genetic determinism rides again Nature 561(7724): 461–63.

9 Kevles DJ (1995) In the name of eugenics: genetics and the uses of human heredity (Cambridge, MA: Harvard 
University Press).

10 Meyer MN, Appelbaum PS, Benjamin DJ, et al (2023) Wrestling with social and behavioral genomics: risks, potential 
benefits, and ethical responsibility Hastings Centre Report 53(1): S2–49.

11 Ibid: Meyer et al consider the broader risks of socio-behavioural genomic research; see also the 2023 NIH NHGRI NIH NHGRI 
roundtableroundtable on the topic. 

https://www.genome.gov/event-calendar/roundtable-discussion-the-promise-and-perils-of-social-and-behavioral-genomics
https://www.genome.gov/event-calendar/roundtable-discussion-the-promise-and-perils-of-social-and-behavioral-genomics
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However, DNA differences are part of the story, so they are relevant to anyone 
concerned with, or impacted by, educational disparities. If we ignore the role of 
genes, we risk overlooking a source of differences between students that could lead 
to supportive educational interventions and practices. 

2.2 DNA, genes and genomes

We are built of cells – trillions of them. Located in the nucleus of each cell is a set  
of genetic instructions called a genome that determines the function and activity of 
the cell. The genome is comprised of a chemical called deoxyribonucleic acid, or 
DNA, which consists of 6.2 billion ‘letters’. These letters (or ‘bases’) are adenine (A), 
cytosine (C), guanine (G) and thymine (T), and they make up the steps on the spiral 
staircase of the double helix of DNA. The order of the As, Cs, Gs and Ts in the genome – 
or DNA sequence – is very important, as it guides the biological processes and 
reactions that are essential for the structure and function of cells (see Annex 1Annex 1).

Many of these processes happen as a result of the information contained in the DNA 
sequence being translated, via gene expression, into proteins such as hormones, 
neurotransmitters and enzymes. The human genome contains around 20,000 of 
these protein-encoding stretches of DNA sequence, or genes. However, most of the 
human genome (around 98.5%) does not encode for proteins. This is called non-non-
coding DNAcoding DNA. The function of non-coding DNA is not yet fully understood, but it is 
known to play a role in regulating how and when the information contained in DNA is 
accessed and used by cells. 

2.3 Genetic and genomic variation

Importantly, there are differences in the DNA sequence between people in a population; if 
you were to compare the DNA sequence of any two apparently unrelated individuals, 
you would find that on average their genome will differ at around 27 million positionsdiffer at around 27 million positions, 
or ‘letters’ (0.4%). The DNA differences between individuals are referred to as ‘genetic 
variation’ and occur throughout the genome. In this report we use the term genetic 
variation to refer to differences in DNA sequence in a specific region (or ‘locus’) in the 
genome, and ‘genomic variation’ to refer to differences spread throughout the genome. 

When two or more versions of DNA sequence exist at a given location in the genome 
in a population, this is called an allele. As humans inherit two copies of DNA (one 
from each parent), the combination of the maternally and paternally inherited alleles 
for a genetic variant can be the same (homozygous) or different (heterozygous). The 
combination of alleles at a given locus is called a genotype. 

One of the most widely studied types of genetic variation in genomic research is 
single nucleotide polymorphisms (SNPs). These are single-base (A, C, G or T) 
changes in the DNA sequence (see Annex 2Annex 2). 

https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/non-coding-dna/
https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/non-coding-dna/
https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genomic-variation


Navigating genomics and education: insights, opportunities and challenges 21

2.4 Estimating the heritability of complex phenotypes 

How important is genomic variation in explaining the differences observed among 
people within a population? Specifically, to what extent does the cumulative impact 
of genomic variation – across all the cells in a person’s body – account for differences 
in behaviour and functioning? How does this genomic influence compare with 
environmental factors, such as the neighbourhood, home environment or broader 
social conditions? 

Rare and severe learning and developmental conditions with clear-cut inheritance 
patterns within families (termed Mendelian or monogenic conditions) are caused by 
a deleterious change in DNA sequence. Such a change typically disrupts the function 
of a gene and, under usual environmental conditions, is both necessary and sufficient 
for the condition to occur. For example, Phenylketonuria (PKU)Phenylketonuria (PKU) is a rare metabolic 
disorder resulting from a mutation in the PAH gene. If untreated, PKU leads to a 
neurotoxic build-up of phenylalanine, causing impaired cognitive development in 
affected individuals. 

However, even for rare and severe monogenic conditions such as PKU, outcomes 
can be significantly improved through environmental interventions. In the UK, PKU is 
routinely tested for, and newborns who test positive can be placed on a life-long 
modified diet low in phenylalanine, which supports typical development. 

The one-to-one relationship between genotype and outcome can make it easier to 
identify the genetic origins of monogenic conditions, especially with the use of DNA 
sequencing technologies and family data (data on both biological parents and their 
child).12 Consequently, many rare genetic variants responsible for monogenic forms 
of severe intellectual disability, developmental delay, and severe speech and language 
conditions have been identified.13 In many cases, the condition is caused by a de novo 
mutation that occurs spontaneously in the affected child. 

In this report, we focus on complex social and behavioural phenotypes related to 
education that arise from both genomic and environmental influences and their 
interplay. What is currently known about the relative contribution of genomic variation 
to differences in educationally relevant phenotypes among individuals? Specialised 
twin studies and adoption studies address this question by comparing the resemblance 
between individuals with varying degrees of genetic and environmental relatedness 
to estimate the relative contributions of nature (genomic variation) and nurture 

12 Ionita-Laza I, Makarov V, Yoon S, et al (2011) Finding disease variants in Mendelian disorders by using sequence 
data: methods and applications American Journal of Human Genetics 89(6): 701–12.

13 Deciphering Developmental Disorders Study (2015) Large-scale discovery of novel genetic causes of developmental 
disorders Nature 519(7542): 223–8. 

https://omim.org/entry/261600
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(environmental variation). While twin studies make certain assumptions,14 they 
consistently show that nearly every aspect of human individual differences are 
heritable – that a portion of the differences measured between people can be 
attributed to DNA differences.15 The remaining variation is attributed to environmental 
factors (everything other than DNA) that are shared and non-shared by twins.16

It is important to be aware that heritability estimates the relative contribution of 
genetic influences to a phenotype in a specific sampled population at a specific 
sampled time. As a result, it does not have a fixed ‘true’ value and will vary across 
contexts, such as different cultures, educational systems, communities and time 
frames. See Annex 3Annex 3 for more information about heritability.

Additionally, demonstrating that a phenotype is heritable does not imply that a 
person’s outcome is determined by their genetic make-up (‘genetic determinism’): 
contextual environmental factors are always important. Nor does heritability mean 
that an outcome is inevitable and unavoidable (‘genetic fatalism’), as changes in the 
environment may alter the expression of a heritable phenotype. For example, the rise 
in short-sightedness from 20% to 80% in a single generation illustrates how population-
wide environmental shifts can influence the expression of a highly heritable phenotype.17 
Targeted environmental interventions – such as wearing glasses – can mitigate the 
impact of this heritable condition. Annex 3Annex 3 provides further guidance on the 
interpretation of heritability estimates. 

Methodological advances have recently made it possible to estimate the heritability 
of a phenotype using measured genomic variation in unrelated samples, bypassing 
the need for specialised twin and adoption cohorts. This is called SNP-based 
heritability. It provides an estimate of the proportion of phenotypic variation that can 
be attributed to measured genomic variation in a sample (GWAS; see Annex 3Annex 3).

While twin and adoption studies investigate the net effects of genes to provide 
estimates of heritability, they do not reveal the specific genetic variants involved, how 
many contribute or how they function.18 To explore these questions, molecular 
genomic research is required that measures genomic variation directly, and links it 
to differences in biological processes, the brain and phenotypes of interest. 

14 The ‘equal environments’ assumption is that identical and non-identical twins experience similar  
environmental exposures, meaning that identical twins behave more alike than non-identical twins due to  
their greater genetic similarity. 

15 Polderman TJ, Benyamin B, de Leeuw CA, et al (2015) Meta-analysis of the heritability of human traits based on  
fifty years of twin studies. Nature Genetics 47(7): 702–9.

16 Plomin R (2011) Commentary: why are children in the same family so different? Non-shared environment three 
decades later International Journal of Epidemiology 40(3): 582–92.

17 Tedja MS, Haarman AEG, Meester-Smoor MA, et al (2020) The genetics of myopia, in Updates on myopia, Ang M 
and Wong T (Editors) (Singapore: Springer), pp95–132.

18 Friedman NP, Banich MT, and Keller MC (2021) Twin studies to GWAS: there and back again Trends in Cognitive 
Science 25(10): 855-69.
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2.5 Genome-wide association studies

Following the completion of the human genome sequencing project,19 international 
efforts focused on cataloguing patterns of genomic variation across human 
populations.20 The characterisation of genomic variation allowed researchers, for the 
first time, to test whether differences in genotype between people are associated 
with differences in complex phenotypes.21 

As a result, the past 15 years have seen a surge of molecular genomic research aimed 
at identifying specific genetic variants that contribute towards educationally relevant 
social and behavioural phenotypes.

Early efforts focused on examining genetic variation in a handful of candidate genes 
that were hypothesised to play a biological role in the phenotype of interest – such as 
neurotransmitter genes in relation to intelligence. However, candidate gene studies of 
complex phenotypes have failed to replicate consistently, and reported associations 
are now assumed to be false positives.22 This failure is attributed primarily to publication 
biases and the incorrect assumption that genetic variants of moderate to large effect 
underlie complex phenotypes. 

More recently, technological and computational advances have made it possible to 
move away from a single-gene approach. Researchers can now systematically scan 
across the human genome to test if common genetic variants – typically SNPs – 
associate with a specific phenotype. These studies are called genome-wide association 
studies (GWASs)23. 

In a GWAS, researchers collect DNA samples from very large groups of unrelated 
(population-based) or related (family-based) individuals. The DNA of each person is 
collected and the DNA sequence read directly or inferred using statistical methods 
at often millions of positions across the genome. This is done using SNP microarrays 
or DNA sequencing technology such as whole-exome sequencing or whole-genome 
sequencing. More detail on GWASs can be found in Annex 4Annex 4.

The genotype data generated in this way undergo careful quality control steps to aid 
the reliability of results, and each genetic variant is assessed for statistical association 
with the phenotype. Variants that reach a predetermined analytical threshold 
indicate a region of the genome (which may include several genetic variants) that 

19 International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human 
genome Nature 431: 931–45.

20 The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation Nature 526: 68–74.

21 Kruglyak, L (2018) The road to genome-wide association studies Nature Reviews Genetics 9: 314–18.

22 Chabris CF, Hebert BM, Benjamin DJ, et al (2012) Most reported genetic associations with general intelligence are 
probably false positives Psychological Science 23(11): 1314–23.

23 Uffelmann E, Huang QQ, Munung NS et al (2021) Genome-wide association studies Nature: Reviews Methods 
Primers 1: 59.
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correlates with the phenotype. This is called a genetic association, and the associations 
identified are replicated in independent samples to ensure that they are reliable. 

The ability of a GWAS to detect genetic associations depends on several factors. 
Firstly, it depends on how frequent the genetic variant is in the population being 
studied. If the change in DNA sequence arose many generations ago and is not 
deleterious to health, the variant can become common in the population. If the change 
arose more recently or is detrimental to survival and fecundity, then it is likely to be 
rare, perhaps even specific to a family or a person. Rare variants can have a large 
effect on an individual, but as they are infrequent, they have a small impact on 
variance in the population. This makes them harder to detect and quantify in a GWAS. 
Secondly, it depends on how big an impact the genetic variant has on a phenotype. 
For example, a genetic variant that accounts for a difference of two years of 
schooling in a population would have a large effect size, while one that accounts for 
two weeks would be considered very small. In fact, most common genetic variants 
identified in a GWAS have extremely small effect sizes, meaning each variant 
predicts only a tiny fraction of the variation in the phenotype. 

The phenomenon of many common genetic variants of small effect size collectively 
influencing a phenotype is known as polygenicity. Polygenic variants become easier 
to detect in GWASs with very large sample sizes, i.e. upwards of 100,000 individuals.

The results of a GWAS are stored as GWAS summary data.24 These data show the 
strength of the evidence for an association with a phenotype at a group level (measured 
by a p-value), the effect size, and the direction of the link (i.e. raising or lowering the 
value of the phenotype) for every genetic variant tested. 

Freely accessible data resources have been developed that collate and catalogue 
published GWASs, including the central EMBL-EBI GWAS CatalogEMBL-EBI GWAS Catalog, the IEU Open IEU Open 
GWAS projectGWAS project and the Global Biobank EngineGlobal Biobank Engine. These resources are fully searchable 
and make summary data for tens of thousands of GWASs available to researchers 
and other interested parties. 

2.6 Genetic ancestry and lack of genomic diversity

To minimise the risk of spurious genetic associations arising from population 
stratification, GWASs have generally been performed using participants who share 
similar patterns of genomic variation.25 Researchers typically group these genetically 
similar individuals using broad continental descriptors such as ‘European’, ‘Asian’ or 
‘African’ and refer to these groupings as genetic ancestry. However, this approach 
fails to capture the complexity of human genetic diversity, as ancestry is a continuum 

24 Ibid.

25 Ibid.

https://www.ebi.ac.uk/gwas/home
https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
https://biobankengine.stanford.edu/
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that varies even within a group.26 While new methods now allow the inclusion of 
individuals from diverse populations, the vast majority of GWASs published so far 
have been performed in populations of European genetic ancestry; recent estimates 
indicate that 94.6% of all discovery GWAS participants are of European genetic 
ancestral descent, despite this group representing only 16% of the global population.27 

This bias presents a serious challenge because, due to differences in environmental 
contexts, the frequency of genetic variants, their effect size and patterns of 
correlation with each other, GWAS findings are not directly comparable or perfectly 
‘portable’ across populations. As a result, genomic insights cannot be meaningfully 
extrapolated from one population to another: to do so risks inaccurate or even 
harmful conclusions about the sources of differences among people. Due to the 
Euro-centric bias, these risks would disproportionately affect already marginalised 
and underserved groups and individuals.28

Moreover, while race and genetic ancestry descriptors can sometimes overlap,  
the two are not interchangeable – race is a social constructsocial construct. There is widespread 
concern within and beyond the scientific community that without careful 
communication, genomic research findings may be misinterpreted as evidence for may be misinterpreted as evidence for 
genetically discrete racial groupsgenetically discrete racial groups. This could perpetuate the harmful and incorrect 
notion that group-level disparities in health, education and behaviour are driven by 
genetic differences, further reinforcing damaging stereotypes.29 In light of these 
concerns, the National Academies of Sciences, Engineering and Medicine (NASEM) 
recently released a report making recommendations on the use of population 
descriptors in genetics and genomics research,30 to which journal editors are paying 
close attention.31

Where does this leave us? The lack of diversity poses a major barrier to the 
translational potential of genomics across all fields of inquiry, including education. 
However, ‘roadmaps’ are being developed to address this,32 and the research 
community and funding bodies are driving numerous initiatives to tackle the 

26 Lewis ACF, Molina SJ, Appelbaum PS, et al (2022) Getting genetic ancestry right for science and society Science 
376: 250–2.

27 Mills MC and Rahal CA (2019) A scientometric review of genome-wide association studies Communications in 
Biology 2: 9.

28 Martin AR, Kanai M, Kamatani Y, et al (2019) Clinical use of current polygenic risk scores may exacerbate health 
disparities Nature Genetics 51: 584–91.

29 Cerdeña JP, Grubbs V, and Non AL (2022) Genomic supremacy: the harm of conflating genetic ancestry and 
race Human Genomics 16(18).

30 National Academies of Sciences, Engineering, and Medicine (2023) Using population descriptors in genetics and 
genomics research: a new framework for an evolving field (Washington, DC: National Academies Press).

31 Feero WG, Steiner RD, Slavotinek A, et al (2024) Guidance on use of race, ethnicity, and geographic origin as 
proxies for genetic ancestry groups in biomedical publications JAMA 331(15): 1276–8.

32 Fatumo S, Chikowore T, Choudhury A, et al (2022) A roadmap to increase diversity in genomic studies Nature 
Medicine 28(2): 243–50.

https://www.genome.gov/genetics-glossary/Race
https://www.eshg.org/news/news-details?tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Bnews%5D=75&cHash=0ff7cdd85b7f04cff6ca7fb0d735841e
https://www.eshg.org/news/news-details?tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Bnews%5D=75&cHash=0ff7cdd85b7f04cff6ca7fb0d735841e
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challenge. For instance, the UK’s Our Future Health biobankOur Future Health biobank, the USA’s All Of Us All Of Us 
ProgramProgram, and H3AfricaH3Africa have been established to work to ensure that global 
populations are better represented in genomic research, though their focus is often 
on health and not education. Analytical methods such as ‘trans-ancestry’ or ‘cross-
ancestry’ GWASs33 now allow researchers to consider multiple genetic ancestries 
simultaneously. These approaches are being facilitated by efforts to coordinate 
global biobank resources for large-scale GWASs.34

However, the diversification of genomic data remains slow and raises its own set of 
ethical questions.35 Concerns include exploitative ‘helicopter research’ practices, 
where researchers from high-income countries exploit collaborations with low- and 
middle-income countries; a lack of meaningful community engagement; and a failure 
to prioritise the co-production of knowledge.36 Structural issues have been identified, 
such as data governance, oversight of public–private partnerships, knowledge 
production and dissemination, and the role of funding bodies and journals in data 
diversification efforts.37 There are also questions to be addressed about why 
minoritised groups may not want to participate in genomic research, and how the 
scientific community can work collaboratively with them to shape future research 
and governance mechanisms. One way in which some of these issues are being 
tackled is through the creation of stakeholder-led biobanks that collect and maintain 
ownership of genomic data, such as the Native BioData ConsortiumNative BioData Consortium. It should also 
be noted that biases arise even within high-income settings, with many sections of 
society entirely unrepresented in the large-scale cohorts currently available.38

2.7 Beyond genetic associations

While GWASs seek to identify specific genetic associations, the results of a GWAS 
can tell researchers other useful things. For instance, SNP-based heritability is now 
routinely calculated as part of a GWAS analysis, as this can indicate whether there 
are genetic associations yet to be discovered and how much predictive power a 
polygenic index (PGI) might provide for the phenotype. 

33 Peterson RE, Kuchenbaecker K, Walters RK, et al (2019) Genome-wide association studies in ancestrally diverse 
populations: opportunities, methods, pitfalls, and recommendations Cell 179(3): 589–603. 

34 Zhou W, Kanai M, Wu KH, et al (2022) Global biobank meta-analysis initiative: powering genetic discovery across 
human disease Cell Genomics 2(10): 100192.

35 Wellcome Trust (2024) Data and diversityData and diversity (London: Wellcome Trust).

36 Martin AR, Stroud RE, Abebe T, et al (2022) Increasing diversity in genomics requires investment in equitable 
partnerships and capacity building Nature Genetic 54: 740–5.

37 Hardcastle F, Lyle K, Horton R, et al (2024) The ethical challenges of diversifying genomic data: a qualitative 
evidence synthesis Cambridge Prisms: Precision Medicine 2: e1. 

38 Schoeler T, Speed D, Porcu E, et al (2023) Participation bias in the UK Biobank distorts genetic associations and 
downstream analyses Nature Human Behaviour 7: 1216–27.

https://ourfuturehealth.org.uk/
https://allofus.nih.gov/
https://allofus.nih.gov/
https://h3africa.org/
https://nativebio.org/
https://wellcome.org/sites/default/files/2024-10/Genomics-Data-and-diversity-in-genomics-landscaping-report.pdf
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The data used to perform a GWAS, or the results of a GWAS analysis, can also be 
used to understand the genomic relationship (genetic correlation) between pairs of 
phenotypes.39 An early GWAS observation was that genetic associations identified 
for one phenotype often correlate with other, sometimes apparently distinct, 
phenotypes. A potential explanation for these correlations is pleiotropy, where a 
genetic variant influences more than one phenotype.40 Understanding the extent to 
which different phenotypes share common genetic influences is important, as it can 
help in developing testable hypotheses about shared pathways or processes, and 
clarifying why certain behavioural or learning conditions often overlap or co-occur.41 

2.8 Distinguishing correlation from causation 

The aim of a GWAS is to identify the causal effects of an individual’s genotype on 
their phenotype. A genetic variant can be considered causal if, in a given environment, 
the individual’s phenotype would have been different had the genetic variant inherited 
from their parents been different. However, the counterfactual (i.e. what would 
happen in an alternative scenario where only the DNA variant changed) cannot be 
tested, because researchers do not have experimental control over which genetic 
variants individuals inherit while keeping all other factors constant. This is a core 
challenge with naturalistic observational research, such as a GWAS, as it makes 
establishing causality difficult. 

Since the DNA sequence a person is born with remains largely unchanged in most 
cells throughout their life course, confounding due to reverse causation can be ruled 
out for genetic associations. For instance, it is not possible for genetic variants 
associated with maths skill to be altered by performance in a maths test. This makes 
genomics distinct from other forms of analysis, where outcomes of interest (such as 
educational achievement) can potentially influence the environmental or behavioural 
risk factors (such as parenting practices or mental health status). 

Because reverse confounding cannot occur with genetic associations, it has often 
been thought that classical confounding was not an issue, leaving only causal genetic 
effects. However, it is now becoming clear that environmental confounding can occur 
in observational genetic association analyses. This is because of the real-world 
phenomenon of gene–environment correlation, where an individual’s DNA correlates 
with the environments they are exposed to or seek out. A variety of gene–environment 
correlation processes have been described that act within and between families 

39 Hackinger S and Zeggini E (2017) Statistical methods to detect pleiotropy in human complex traits Open Biology 
7(11): 170125.

40 Solovieff N, Cotsapas C, Lee P, et al (2013) Pleiotropy in complex traits: challenges and strategies Nature Reviews 
Genetics 14: 483–95.

41 Watanabe K, Stringer S, Frei O, et al (2019) A global overview of pleiotropy and genetic architecture in complex 
traits Nature Genetics 51: 1339–48.
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which we do not cover in detail in this report.42 The key point is that due to gene–
environment correlation processes, genetic associations can also pick up the 
influences of social or demographic factors that contribute to the phenotype  
being examined.

For exampleFor example, a genetic variant in a parent that causes allergies might prompt them to 
move from a rural to an urban area. The parent provides both their DNA and a 
rearing environment to their offspring. If the urban-born offspring inherits the allergy 
variant, a correlation is created between the variant and geography (i.e. the allergy-
increasing allele becomes more common in urban areas than rural ones). A correlation 
is also created with any other offspring phenotype that is influenced by growing up in 
an urban setting. 

As a result, if the offspring were to participate in a GWAS, a non-causal association 
may be detected between the allergy-related variant and pollution levels. While the 
variant has a causal effect on geography in the parent (i.e. where they chose to live) 
and is a valid predictor of pollution exposure in the offspring, it is not causal in the 
strictest sense that changing the variant in the offspring will alter environmental 
pollution levels. Instead, the association is induced because the parental genome is 
part-shared with the offspring and also shapes the rearing environment they provide. 
This is a form of passive gene–environment correlation (see Figure 1). 

Figure 1: Schematic of a non-causal genetic association

42 Pingault JB, O’Reilly PF, Schoeler T, et al (2018) Using genetic data to strengthen causal inference in observational 
research Nature Reviews Genetics 19: 566–80.

http://gusevlab.org/projects/hsq/
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In the example shown in Figure 1Figure 1, the genotype of a parent has a causal influence on 
allergies and their behaviour(s), such as where they choose to live. When this variant 
is inherited by the child, it will become non-causally correlated with the child’s 
phenotype(s) that are a consequence of being raised in the environment that their 
parents created (shown by the dashed line). 

Similarly, child educational outcomes can be influenced by parental genes through 
parental rearing behaviours and inherited social, economic and learning environments. 
These ‘indirect’ environmental effects can occur in addition to the ‘direct’ effects on 
child outcomes of inherited genetic variation. As discussed in Section 4.4Section 4.4, ‘indirect’ 
genetic associations appear to be more common for social outcomes and cognitive 
phenotypes that relate to education.43 Other mechanisms, such as assortative 
mating (when individuals are more likely to choose a genetically similar individual to 
partner with, rather than randomly – a known phenomenon for education44) and 
population stratification can also produce non-causal genetic associations that 
complicate the interpretation of genetic associations. 

As a consequence, estimates of genetic associations are likely to capture both the 
direct (putatively causal) effects of an individual’s DNA, and the indirect effects of 
genetic relatives, assortative mating and population stratification. So, while genetic 
association is a first step in establishing a causal link between a genetic variant and a 
phenotype, it should be interpreted as correlational until additional evidence can be 
gathered supporting particular causal pathways.

2.9 Understanding neurobiology: from genetic 
variants, to genes, to biology 

A primary motivation for conducting a GWAS for any complex phenotype is to gain 
novel insights into biology by implicating genetic variants in specific genes, biological 
pathways or processes.45 In the context of education, a common aim is to improve 
researchers’ understanding of the neurobiological mechanisms behind individual 
differences in learning and brain function.

In medicine, understanding biological mechanisms can inform drug discovery and 
development.46 In education, neurobiological insights could support teachers in the 

43 Howe LJ, Nivard MG, Morris TT, et al (2022) Within-sibship genome-wide association analyses decrease bias in 
estimates of direct genetic effects Nature Genetics 54: 581–92. 

44  Mare, RD (1991) Five decades of educational assortative mating American Sociological Review 56(1): 15–32. 

45 Uffelmann E, Huang QQ, Munung NS et al (2021) Genome-wide association studies Nature: Reviews Methods 
Primers 1: 59.

46 King EA, Davis JW, and Degner JF (2019) Are drug targets with genetic support twice as likely to be approved? 
Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval PLoS 
Genetics 15(12): e1008489. 
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classroom by informing the selection of effective pedagogical techniques and 
learning materials, or aid the development of effective intervention strategies for 
when – or even before – difficulties arise.

However, interpreting the biological implications of genetic variants identified through 
GWASs remains a significant challenge.47 One reason is that – as mentioned – genetic 
associations can capture the confounding influences of the environment and other 
factors as well as the direct effects of an individual’s biology. Even if this issue were 
resolved, the highly polygenic and pleiotropic nature of such phenotypes makes 
tracing pathways from genes to brain to phenotypes extremely complex. Additionally, 
associated variants tend to be inherited in ‘chunks’ (called ‘linkage disequilibrium’), 
making it difficult to identify the specific variant responsible for the association 
signal. These issues are further compounded by incomplete knowledge of biological 
pathways and networks in the brain, and how they develop across infancy to 
adulthood. For these reasons, translating GWAS findings into biological insights 
remains challenging – even in the medical sciences.48 

Further issues can arise from the depth and mix of knowledge and skills required to 
interpret GWAS results. At a minimum, biological interpretation of GWAS data 
requires computational expertise and in silico analysis of additional biological 
datasets, such as proteomic, transcriptomic or epigenomic data.49 

Ultimately, understanding the causal mechanisms underlying phenotypic variation 
requires basic scientific research that extends beyond GWASs. This includes studies 
using animal models and computational approaches, where shared neural, hormonal 
or developmental processes and mechanisms can be experimentally manipulated – 
such as through gene modification or altering environmental conditions – to observe 
their effects on learning and behaviour.

2.10 Polygenic indices for genomic prediction

Data from a GWAS can be used to calculate a genomic predictor of a phenotype 
known as a polygenic index (PGI).50 A PGI is a person-specific value that summarises 
some of that individual’s genetic predisposition to a phenotype. Instead of focusing 
on individual SNP-level genetic associations, PGIs sum up the effects of thousands of 
SNP-level genetic associations spread throughout the genome, weighted by their 

47 Brandes N, Weissbrod O, and Linial M (2022) Open problems in human trait genetics Genome Biology 23: 131.

48 Ibid.

49 Uffelmann E, Huang QQ, Munung NS et al (2021) Genome-wide association studies Nature: Reviews Methods 
Primers 1: 59.

50 Becker J, Burik CAP, Goldman G, et al (2021) Resource profile and user guide of the Polygenic Index Repository  
Nature Human Behaviour 5: 1744–58.
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strength and direction of their GWAS association.51 Details on how a PGI is calculated, 
with a simplified example, is provided in Annex 5Annex 5.

The development of PGIs has transformed the genomic research landscape and 
holds potential for translation, most notably in healthcare.52 For example, PGIs for 
diagnosable health conditions (such as heart disease) are undergoing pilot trialsundergoing pilot trials to 
assess their utility in informing population-level screening and management of health 
conditions. Nonetheless, a range of social and ethical issues pertain, as highlighted in 
a recent report – “Predicting: the Future of Health?”“Predicting: the Future of Health?”  from the Ada Lovelace Institute 
and the Nuffield Council on Bioethics.

The remainder of this report focuses largely on the scientific insights and ethical 
implications of PGIs for social and behavioural phenotypes relating to education. 
These relate to both basic research on the genetic and environmental contributions 
to phenotypic variation across development (Section 4Section 4), and to some of the issues 
that may arise when considering translation into education contexts (Section 5Section 5). 
While this report does not aim to be exhaustive, we synthesise some of the key areas 
of contention identified during our research. 

51 Choi SW, Mak TS, and O’Reilly PF (2020) Tutorial: a guide to performing polygenic risk score analyses 15(9): 
2759–772. 

52 Lennon NJ, Kottyan LC, Kachulis C, et al (2024) Selection, optimization and validation of ten chronic disease 
polygenic risk scores for clinical implementation in diverse US populations Nature Medicine 30: 480–7. 

https://www.genomicseducation.hee.nhs.uk/blog/nhs-launches-new-polygenic-scores-trial-for-heart-disease/
https://www.adalovelaceinstitute.org/report/predicting-the-future-of-health/
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Key messages

• In some genomics research, the word ‘attainment’ has been used to refer to 
the number of years spent in education, which is different from how the term 
is typically used in social science research and education.

• Number of years in education (‘EduYears’) is the most widely studied social 
phenotype in genomics, largely due to data availability.

• Like medical conditions, behavioural and social phenotypes related to 
education are highly polygenic and multifactorial. 

• Specific genetic variants of small effect have been identified and tend to be 
pleiotropic, predicting multiple phenotypes.

• The EduYears polygenic index (PGI) predicts a larger share of individual 
educational differences than some other indicators (such as family 
socioeconomic status), but it is less predictive than prior achievement.

• While thousands of genetic associations have been identified, much of  
the polygenic component of social and behavioural phenotypes remains to 
be explored.

• Associations identified between social and behavioural phenotypes and 
genetic variants are correlational, and establishing causal paths from specific 
genetic variants to brain and behaviour is complex.

• The scientific and wider research community is starting to pay attention  
to wider discourse of the sociopolitical and ethical implications of  
genomics research. 

At the time of writing, more than 6,000 genome-wide association studies (GWASs) 
have been performed across the medical, behavioural and social sciences for 
approximately 3,300 phenotypes. Early GWASs often failed to identify robust 
associations, as genetic effect sizes were much smaller than expected and sample 
sizes were not large enough to detect them. However, over the past five years – 

Continued > >> >
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thanks to expanded data-sharing practices and international collaborations – the 
average size of a GWAS has tripled to include around 140,000 participants. This has 
substantially increased the number of genetic associations identified.53 A few 
GWASs are much larger than this; for instance, the latest GWAS for height comprised 
5.4 million adults.54

In this section we begin by describing some of the most studied phenotypes that link 
to education and educational outcomes. We then provide an overview of findings 
from recent large-scale GWASs, including the generation of PGIs for educationally 
relevant phenotypes, and note some of the ethical concerns that have arisen as a 
consequence of these efforts. 

3.1 Phenotypes that are relevant to education 

For decades, twin and adoption study research has consistently demonstrated that 
nearly every aspect of individual differences in human behaviour and functioning are 
heritable.55 In the context of education, this includes how many years one spends in 
education, performance in standardised tests (‘achievement’), wellbeing, personality, 
attention, communication, behavioural needs, specific learning difficulties, socio-
emotional phenotypes and even A-level subject choice.56 This section of the report 
explores what is known about the genomic contributions to some of these heritable 
phenotypes. See Annex 3Annex 3 for more information about heritability.

The most extensively studied educational phenotype is the number of years spentnumber of years spent  
in formal educationin formal education, or ‘EduYears’.57 This measure is often referred to as ‘attainment’ 
in the genomics literature, which can be confusing as this is not how attainment is 
typically defined in the social sciences, education practice or policy.58 Outside of 
genomics, attainment is an umbrella term that can also encompass performance in 
standardised assessments and tests or high-stakes exams. As a result, ‘attainment’ 
as it is often used in genomics research captures only one facet of education. Years 

53 Abdellaoui A, Yengo L, Verweij KJH, and Visscher PM (2023) 15 years of GWAS discovery: realizing the promise  
The American Journal of Human Genetics 110(2): 179–94.

54 Yengo L, Vedantam S, Marouli E, et al (2022) A saturated map of common genetic variants associated with human 
height Nature 610: 704–12.

55 Turkheimer, E (2000) Three laws of behavior genetics and what they mean Current Directions in Psychological 
Science 9(5): 160–4. 

56 Rimfeld K, Ayorech Z, Dale P, et al (2016) Genetics affects choice of academic subjects as well as achievement  
Scientific Reports 6: 26373.

57 Okbay A, Wu Y, Wang N, et al (2022) Polygenic prediction of educational attainment within and between families 
from genome-wide association analyses in 3 million individuals Nature Genetics 54: 437–49.

58 Connelly R, Gayle V, and Lambert PS (2016) A review of educational attainment measures for social survey 
research Methodological Innovations 9.

https://www.thessgac.org/_files/ugd/67ae52_caf99b83b5a8413e92d4bb1f0120f007.pdf
https://www.thessgac.org/_files/ugd/67ae52_caf99b83b5a8413e92d4bb1f0120f007.pdf
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spent in education may correlate with variation in qualifications obtained, 
educational experiences and the nature of education undertaken, but it is not 
synonymous with these. 

The primary reason that number of years spent in education is examined in genomics 
research is that it can be inferred from routinely collected demographic data, 
specifically ‘highest level of education achieved’. This data can be reported directly 
by research participants in genomic cohorts and biobanks without requiring complex 
linkage to educational databases such as England’s National Pupil Database (NPD). 
As a result, researchers are able to use this to calculate years-of-education equivalents 
across international cohorts, and conduct large-scale GWASs for ‘EduYears’. To 
avoid confusion, we use the term ‘years spent in education’ (or ‘EduYears’) to be 
consistent with the actual measures used in these studies, rather than referring to it 
as attainment. Importantly, variation in years spent in education is recognised as a 
predictor of numerous life outcomes, such as incomeincome, health,59 and even who you 
choose to partner with.60 

Performance in standardised tests or exit exams across subjects have also been 
examined in GWAS frameworks, where they are referred to as ‘educational 
achievement’ or ‘educational performance’.61 Use of the term ‘performance’ in this 
way can be another source of confusion, because in UK education contexts, whilst 
performance usually relates to average exam grades, it may also take into account 
other indicators such as prior attainment and socioeconomic status – factors not 
routinely accounted for in genomic analyses. 

Another phenotype examined is intelligence. Also called general cognitive ability, 
intelligence refers to a general mental capacity to reason, learn from experience, and 
understand complex ideas and concepts. This general factor, or ‘g’, is one of the most 
consistently documented findings in over a century of psychological research.62  
It reflects the observation that individuals who perform well on one type of cognitive 
test tend to do well on others.63 Intelligence is a reliable predictor of educational,64 

59 Balaj M, Henson CA, Aronsson A, et al (2024) Effects of education on adult mortality: a global systematic review 
and meta-analysis The Lancet Public Health 9(3): e155–65.

60 Mare, RD (1991) Five decades of educational assortative mating American Sociological Review 56(1): 15–32. 

61 Rajagopal VM, Ganna A, Coleman JRI, et al (2023) Genome-wide association study of school grades identifies 
genetic overlap between language ability, psychopathology and creativity Scientific Reports 13: 429.

62 Spearman C (1904) ‘General intelligence’, objectively determined and measured American Journal of Psychology 
15: 201–92.

63 Carroll JB (1993) Human cognitive abilities: a survey of factor-analytic studies (Cambridge: Cambridge  
University Press).

64 Deary IJ, Strand S, Smith P, and Fernandes C (2007) Intelligence and educational achievement Intelligence 35: 13–21.

https://social-mobility.data.gov.uk/intermediate_outcomes
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occupational65 and health outcomes66 and has been shown to remain relatively 
stable throughout adult life.67 

However, this is not to suggest that intelligence is immutable. Intelligence scores are 
subject to change both within and between people; schooling has been shown to 
raise intelligence,68 as has the rearing environment.69 Discourse related to the 
measurement and interpretation of intelligence scores, such as its dependence on 
cultural context and socioeconomic status, is not covered in this report.70

Intelligence research continues to raise ethical concerns, especially when combined 
with genetics.71 These concerns stem, in part, from historical abuse of intelligence 
testing and research findings. For instance, in the early 1900s cognitive screening in 
the US was used to justify the exclusion of individuals deemed intellectually ‘inferior’, 
particularly those from non-European countries.72 Similarly, eugenic ideologies 
influenced policies such as forced sterilisation, targeting individuals with intellectual 
disabilities and other marginalised groups under the guise of preventing the 
transmission of ‘undesirable’ phenotypes.73 Measures of intelligence are also the 
subject of continued ethical debate about their appropriateness and inclusivity.

This history and its legacy can make it challenging to justify genomic research into 
intelligence and other social and behavioural phenotypes, especially if there are 
minimal potential benefits to individuals and society – beyond the advancement of 
knowledge itself – alongside potential harms. The risks of genetic determinism, 
discrimination and stigmatisation persist. Moreover, evidence suggests that the 
findings from GWASs of intelligence and years spent in education are particularly 
susceptible to misuse and misappropriation. Specific examples include erroneous 
claims of a genetic basis for differences in intelligence between racial groups, and  
the justification of acts of violence.74 

65 Strenze T (2007) Intelligence and socioeconomic success: a meta-analytic review of longitudinal research 
Intelligence 35: 401–26.

66 Calvin CM, Batty GD, Der G, et al (2017) Childhood intelligence in relation to major causes of death in 68 year follow-
up: prospective population study British Medical Journal 28(357): j2708.

67 Deary IJ, Pattie A, and Starr JM (2013) The stability of intelligence from age 11 to age 90 years: the Lothian birth 
cohort of 1921 Psychological Science 24: 2361–8.

68 Brinch CN and Galloway TA (2012) Schooling in adolescence raises IQ scores Proceedings in National Academy of 
Sciences U.S.A. 109(2): 425–30.

69 Willoughby EA, McGue M, Iacono WG, and Lee JJ (2021) Genetic and environmental contributions to IQ in adoptive 
and biological families with 30-year-old offspring Intelligence 88: 101579.

70 Lubinski D (2025) Education, intelligence, placement, and selection: a discussion of paradoxes and fairness 
Intelligence 108: 101881.

71 Hayden EC (2013) Ethics: taboo genetics Nature 502: 26–8.

72 Blinkhorn S (2019) Early US immigrants were tested for cognitive impairment, not IQ Nature 574(7776): 36.

73 De Hemptinne MC and Posthuma D (2023) Addressing the ethical and societal challenges posed by genome-wide 
association studies of behavioral and brain-related traits Nature Neuroscience 26(6): 932–41.

74 Ibid.
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Large genomic cohorts and biobanks contain information on many other phenotypes 
and conditions. This has led to statistically well-powered GWASs being conducted 
for a number of heritable phenotypes that relate to, or may be of interest to, education. 
We include some examples of these. 

3.2 Polygenicity: genetic associations of very small 
effect have been identified

As mentioned above, the widespread availability of ‘EduYears’ data for cohort 
studies, coupled with the creation of the Social Science Genetic Association Social Science Genetic Association 
ConsortiumConsortium (SSGAC) for data sharing, has made years spent in education one of the 
most extensively studied social phenotypes in genomics. To date, four large-scale 
GWASs have been performed by the SSGAC for this measure. The first, published in 
2013, involved 126,559 participants, making it one of the largest GWASs of ‘EduYears’ 
ever performed at the time.75 As sample sizes increased, so did the number of genetic 
variants identified. The fourth and most recent SSGAC GWAS included around 3 
million adults and identified 3,952 common genetic variants associated with years 
spent in education. A consistent finding across all four GWASs is that each identified 
genetic variant accounts for only a tiny fraction (at most 0.02%) of differences between 
individuals in years spent in education.76

A comprehensive summary of GWAS findings for other behavioural phenotypes 
related to education is beyond the scope of this report. However, several noteworthy 
studies – in terms of size – are described here. 

The most recent GWAS for intelligence comprised 269,867 adults from 11 European 
cohorts and identified 205 genetic associations.77 This replicated many of the 
associations found in earlier GWASs of general cognitive function.78 A 2022 GWAS of 
dyslexia based on more than 50,000 self-reported dyslexic adults and around 1 
million controls, identified 42 genetic associations – many of which were novel.79 The 
largest GWAS for attention deficit hyperactivity disorder (ADHD) analysed 38,691 

75 Rietveld CA, Medland SE, Derringer J, et al (2013) GWAS of 126,559 individuals identifies genetic variants 
associated with educational attainment Science 340(6139): 1467–71. 

76 Okbay A, Wu Y, Wang N, et al (2022) Polygenic prediction of educational attainment within and between families 
from genome-wide association analyses in 3 million individuals Nature Genetics 54: 437–49.

77 Savage JE, Jansen PR, Stringer S, et al (2018) Genome-wide association meta-analysis in 269,867 individuals 
identifies new genetic and functional links to intelligence Nature Genetics 50(7): 912–19.

78 Sniekers S, Stringer S, Watanabe K, et al (2017) Genome-wide association meta-analysis of 78,308 individuals 
identifies new loci and genes influencing human intelligence Nature Genetics 49: 1107–12.

79 Doust C, Fontanillas P, Eising E, et al (2022) Discovery of 42 genome-wide significant loci associated with 
dyslexia Nature Genetics 54: 1621–29.
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individuals with ADHD and 186,843 controls, and identified 27 genomic regions 
associated with ADHD.80 

Other published GWASs of interest to educators and educational researchers 
include those for exit exam performance in languages and mathematics derived 
from the Danish education register;81 reading and language skills;82 crystallised and 
fluid cognitive abilities derived from online testing;83 executive function;84 non-cognitive 
skills;85 autism;86 personality;87 and mental health disorders such as depression and 
anxiety.88 Online GWAS catalogues such as the EMBL-EBI CatalogEMBL-EBI Catalog and the IEU IEU 
Open GWAS projectOpen GWAS project can be queried to identify whether a GWAS for a specific 
phenotype has been published, the results of the study, and whether the GWAS 
summary data are available to download.

A key finding to emerge from these large-scale GWASs is that complex phenotypes 
related to education are highly polygenic. This is not a finding unique to phenotypes 
relevant to education: complex medical conditions (such as cardiovascular disease) 
and physical phenotypes (such as height and weight) are also influenced by 
thousands of genetic variants, each of tiny (but detectable) effect, along with 
environmental factors. 

80 Demontis D, Walters GB, Athanasiadis G, et al (2023) Genome-wide analyses of ADHD identify 27 risk loci, refine 
the genetic architecture and implicate several cognitive domains Nature Genetics 55: 198–208. 

81 Rajagopal VM, Ganna A, Coleman JRI, et al (2023) Genome-wide association study of school grades identifies 
genetic overlap between language ability, psychopathology and creativity Scientific Reports 13: 429.

82 Eising E, Mirza-Schreiber N, de Zeeuw EL, et al ( 2022) Genome-wide analyses of individual differences in 
quantitatively assessed reading- and language-related skills in up to 34,000 people Proceedings of National 
Academy of Sciences U.S.A. 119(35): e2202764119.

83 Carey C, Huang Y, Strong RW, et al (2021) Shared and distinct genetic influences between cognitive domains and 
psychiatric disorder risk based on genome-wide data Biological Psychiatry 89(9).

84 Hatoum AS, Morrison CL, Mitchell EC, et al (2023) Genome-wide association study shows that executive 
functioning is influenced by GABAergic processes and is a neurocognitive genetic correlate of psychiatric 
disorders Biological Psychiatry 93(1): 59–70.

85 Demange PA, Malanchini M, Mallard TT, et al (2021) Investigating the genetic architecture of noncognitive skills 
using GWAS-by-subtraction Nature Genetics 53: 35–44.

86 Grove J, Ripke S, Als TD, et al (2019) Identification of common genetic risk variants for autism spectrum disorder  
Nature Genetics 51: 431–44.

87 Gupta P, Galimberti M, Liu Y, et al (2024) A genome-wide investigation into the underlying genetic architecture of 
personality traits and overlap with psychopathology Nature Human Behaviour 8: 2235–49.

88 Sullivan PF, Agrawal A, Bulik CM, et al (2018) Psychiatric genomics: an update and an agenda American Journal of 
Psychiatry 175(1): 15–27.
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3.3 Measurement of phenotypes relevant to education

The large sample size required for GWASs means that the highly polygenic phenotypes 
being examined are often measured in a very limited way. For instance, as discussed 
above, the GWASs of years spent in education were performed because more detailed 
measures of educational attainment and achievement were not available (and still 
are not available) in the large genomic cohorts needed for a GWAS. In essence, there 
is a trade-off between sample size and measurement, and in most instances sample 
size wins, leading to a relatively crude measure of the phenotype of interest or proxies, 
such as EduYears, being used. It is worth noting that the outcome measures that 
educators and policymakers are particularly concerned with are overall attainment 
levels, and gaps between groups. These data are available in the NPD, but in most 
instances genomic cohorts are not linked to the NPD. This divergence between what 
can be measured in genomic studies and what stakeholders prioritise highlights an 
important challenge in aligning genomic research with real-world educational goals.

The dyslexia GWAS described above is another example of this trade-off; it used 
data collected from the commercial direct-to-consumer (DTC) company 23&Me that 
relied on a single participant self-report item: the response to the question ‘Have you 
been diagnosed with dyslexia?’.89 More detailed and well-validated assessments of 
reading difficulty are available, but as these require resource-intensive administration 
by educational psychologists or appropriately trained researchers, they are not 
routinely collected for very large research cohorts or biobanks. The impact of taking 
a minimal approach to measurement of the phenotype being studied in a GWAS is 
only starting to be understood.90

When more detailed and rigorous measurements are collected across smaller 
research cohorts, meta-analytical approaches can be employed to combine data 
from multiple independent cohorts. This has been facilitated by the formation of 
international consortia that co-ordinate data sharing and access across research 
groups, such as the SSGACSSGAC (for years spent in education), the Psychiatric Psychiatric GenomicsGenomics  
ConsortiumConsortium (for psychiatric conditions) and the GenLangGenLang consortium (for speech, 
reading, language and related skills). 

However, meta-analyses can be complicated by diversity in how phenotypes  
are measured across cohorts, as well as variability arising from differences in 
participant recruitment criteria, age, time period, and environmental or social 
contexts. Many of the same data sources are included in multiple consortia,  
meaning that the same populations – predominantly those of European genetic 
ancestry – are analysed repeatedly. 

89 Doust C, Fontanillas P, Eising E, et al (2022) Discovery of 42 genome-wide significant loci associated with dyslexia  
Nature Genetics 54: 1621–9.

90 Cai N, Revez JA, Adams MJ, et al (2020) Minimal phenotyping yields genome-wide association signals of low 
specificity for major depression Nature Genetics 52: 437–47.

https://www.thessgac.org/
https://pgc.unc.edu/
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3.4 Missing heritability: much of the polygenic 
component remains to be discovered

While many genetic variants have been identified by GWASs, if the effects of each 
are added up, they account for only a small fraction of the phenotype’s heritability as 
estimated using twin studies. This has been called the ‘missing heritability problem’.91 
However, this gap is much smaller if SNP-based heritability is considered, i.e. if the 
effects of all genetic variants examined in a GWAS are taken into account (see Annex 3Annex 3). 

A key finding to emerge is that the SNP-based heritability of behavioural phenotypes 
related to education is larger than the variance explained by the set of genetic 
associations identified in a GWAS, but smaller than twin-based heritability values. For 
example, when summed together, the genetic variants associated with years spent in 
education account for about 13% of differences between individuals, while twin 
studies estimate that about 40% of these differences are due to genetic variation.92 
The SNP heritability for years in education is about 20%, between these two values.93 
A similar pattern is observed for intelligence (see Figure 2).94 For phenotypes such as 
ADHD and anxiety, the SNP heritability is generally less than half the twin-based 
heritability, averaging at around 37%.95

Figure 2: Missing heritability for intelligence

Figure 2 shows heritability estimates for intelligence based on the intelligence PGI,  
all SNPs measured in the GWAS (SNP heritability) and twin studies (twin heritability). 
Two types of ‘missing heritability’ have been identified for behavioural and social 
phenotypes, including intelligence and years in education. A gap exists between all 
genetic associations identified in a GWAS (~5% for intelligence) and SNP-based 

91 Manolio T, Collins F, Cox N, et al (2020) Finding the missing heritability of complex diseases Nature 461: 747–53.

92 Silventoinen K, Jelenkovic A, Sund R, et al (2020) Genetic and environmental variation in educational attainment: 
an individual-based analysis of 28 twin cohorts Scientific Reports 10: 1–11. 

93 Okbay A, Wu Y, Wang N, et al (2022) Polygenic prediction of educational attainment within and between families 
from genome-wide association analyses in 3 million individuals Nature Genetics 54: 437–49.

94 Plomin R and von Stumm S (2018) The new genetics of intelligence Nature Reviews Genetics 19(3): 148–59.

95 Plomin R (2022) The next 10 years of behavioural genomic research JCPP Advances 2(4): e12112.
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heritability (~25%), which can be narrowed by increasing GWAS sample sizes. A gap 
also exists between SNP heritability (~25%) and twin heritability (~50%), the narrowing 
of which will require alternative approaches that consider rare variants and interactions 
between genes and environments. 

This indicates two things. Firstly, very weak-effect common genetic variants are 
being missed by the discovery GWASs due to inadequate statistical power. 
Increasing sample sizes even further is a way around this issue, and is a key reason 
why GWASs continue to be conducted for years spent in education using ever larger 
numbers of participants. Secondly, if twin-based estimates are broadly correct,96 the 
gap between SNP and twin-based heritability indicates that other sources of genetic 
influence – beyond the additive effects of common variants – are important. The 
sources of this ‘still-missing’ heritability are debated, but likely involve the contribution 
of low-frequency (rare) variants of larger effect, and gene–gene and gene–environment 
interaction effects.97

Like polygenicity, the gap between variance accounted for by identified genetic 
associations and SNP-based and twin-based heritability estimates is not unique to 
behavioural and social phenotypes, as it is also observed for medical conditions and 
physical phenotypes.98 

3.5 Pleiotropy: genetic variants associate with 
multiple phenotypes

An early observation from GWASs was that genetic associations identified for one 
social or behavioural phenotype often also associate with multiple other phenotypes. 
For instance, genetic variants associated with ADHD also overlap with those linked  
to schizophrenia, major depressive disorder and autism.99 This contrasts with 
neurological conditions such as Parkinson’s and Alzheimer’s disease, which appear 
to be more genetically distinct.100 

Rather than focusing on one genetic association at a time, newly developed methods 
(see Annex 3Annex 3) allow researchers to assess the extent to which all genomic variation 
measured in a GWAS overlaps between pairs of phenotypes – a concept called 
genetic correlation. These studies have provided evidence of widespread pleiotropy, 

96 Wolfram T and Morris D (2023) Conventional twin studies overestimate the environmental differences between 
families relevant to educational attainment NPJ Science of Learning 8: 24.

97 Brandes N, Weissbrod O, and Linial M (2022) Open problems in human trait genetics Genome Biology 23: 131.

98 Ibid.

99 Demontis D, Walters GB, Athanasiadis G, et al (2023) Genome-wide analyses of ADHD identify 27 risk loci, refine 
the genetic architecture and implicate several cognitive domains Nature Genetics 55: 198–208.

100 Brainstorm Consortium (2018) Analysis of shared heritability in common disorders of the brain Science 
360(6395): eaap8757.
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where the same genetic variants affect multiple phenotypes across domains such as 
years in education, health, neurodevelopment and psychiatry.101 Some of these 
genomic relationships are unexpected, such as the one reported between dyslexia 
and pain.102

From a research standpoint, evidence of pleiotropy can strengthen observational 
longitudinal studies by helping researchers to develop hypotheses about the 
potential reasons for genetic correlation. For example, does the moderate positive 
genetic correlation between dyslexia and ADHD arise from shared biological 
mechanisms, with genetic variants influencing a common cognitive process or 
property underlying both (e.g. attention or synaptic pruning)? Or does it arise due to 
the causal effect of genetic variation influencing ADHD via its effect on dyslexia? 
Emerging approaches that utilise genomic and GWAS data may help researchers 
start to tackle these types of questions.103 

More directly, pleiotropy means that an individual’s PGI (Section 2.10Section 2.10) for one 
phenotype can also predict other phenotypes. For example, genetic variants 
associated with higher intelligence are also associated with a higher risk of anorexia 
nervosa,104 while genetic variants associated with more years in education link to 
increased risk for schizophrenia.105 This has ethical implications for the interpretation 
and potential application of PGIs in settings such as education (see Section 5.2Section 5.2), as 
an individual’s PGI for one phenotype may inadvertently reveal information about 
other unrelated or sensitive phenotypes. In such a scenario, how should PGI 
information be responsibly and clearly communicated, informed consent managed, 
and privacy protected? 

3.6 Understanding the biology has proved difficult 

As social and behavioural phenotypes related to education are highly pleiotropic 
and polygenic, biological interpretation of GWAS results has proved difficult. As 
discussed in Section 2.8Section 2.8, gene–environment correlation complicates matters 
further, as it means that polygenic influences can manifest not only via biological 
pathways but also through social or environmental mechanisms. 

101 Bulik-Sullivan BK, Po-Ru L, Finucane HK, et al (2015) LD Score regression distinguishes confounding from 
polygenicity in genome-wide association studies Nature Genetics 47(3): 291–5. 

102 Doust C, Fontanillas P, Eising E, et al (2022) Discovery of 42 genome-wide significant loci associated with 
dyslexia Nature Genetics 54: 1621–29.

103 Frei O, Holland D, Smeland OB, et al (2019) Bivariate causal mixture model quantifies polygenic overlap between 
complex traits beyond genetic correlation Nature Communications 10: 2417; Grotzinger AD, Rhemtulla M, de 
Vlaming R, et al (2019) Genomic structural equation modelling provides insights into the multivariate genetic 
architecture of complex traits Nature Human Behaviour 3: 513–25.

104 Hill WD, Harris SE, and Deary IJ (2019) What genome-wide association studies reveal about the association 
between intelligence and mental health Current Opinions in Psychology 27: 25–30. 

105 Lee JJ, Wedow R, Okbay A, et al (2018) Gene discovery and polygenic prediction from a genome-wide association 
study of educational attainment in 1.1 million individuals Nature Genetics 50(8): 1112–21.
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It can be hard to reconcile how DNA differences – which must act through biological 
mechanisms such as altering gene expression or neural development – can be 
mediated by the environment. A hypothetical scenario often used to illustrate 
socially mediated genetic effects involves discrimination based on a genetically 
influenced phenotype.

For instance, imagine a society where blue-eyed children are systematically 
disadvantaged in education (e.g. given fewer learning resources and support), while 
brown-eyed children are favoured. In this scenario, the genetic variants for eye colour 
influence educational outcomes indirectly by eliciting differential treatment from others 
within the social environment. This produces a link between genetic variants for eye 
colour and educational outcomes through gene–environment correlation. If a GWAS 
were conducted in this society and the results were used to create a PGI for educational 
attainment, children with blue eyes would likely have a lower educational attainment 
PGI than children with brown eyes. In this scenario, the genetic associations – and by 
extension, the PGI – are indexing aspects of the child’s social environment that 
contribute to disparities in education. 

There is now strong evidence that many of the genetic associations for years spent in 
education not only reflect the biology of the individual, but also capture aspects of 
the individual’s demographic characteristics and social environment that influence 
educational outcomes (see Section 4.4Section 4.4). 

Unravelling the complex biological, social and environmental paths linking highly 
polygenic and pleiotropic genomic influences on social and behavioural phenotypes 
related to education remains a challenge for researchers and will require other 
analytical approaches, including biological and psychological developmental models. 

For now, insights into specific biological mechanisms underpinning differences in 
learning remain scarce. For example, while the dyslexia GWAS implicated brain-
expressed genes, these genes do not readily map to biological pathways or cognitive 
models of reading.106 Similarly, the genetic variants identified in the SSGAC’s series 
of EduYears GWASs are located close to genes that are expressed during 
neurodevelopment, but do not include those involved in glial cell function. The 
authors note that this was unexpected, given neuroscientific evidence for the role of 
glial cells in learning and memory.107 Finally, the most recent GWAS of intelligence 
pointed to contributions from general properties of the brain including neurogenesis 
(the number of neurons produced), neuronal differentiation (the specialisation of 
neurons) and synaptic communication.108 

106 Doust C, Fontanillas P, Eising E, et al (2022) Discovery of 42 genome-wide significant loci associated with 
dyslexia Nature Genetics 54: 1621–29.

107 Lee JJ, Wedow R, Okbay A, et al (2018) Gene discovery and polygenic prediction from a genome-wide association 
study of educational attainment in 1.1 million individuals Nature Genetics 50(8): 1112–21.

108 Savage JE, Jansen PR, Stringer S, et al (2018) Genome-wide association meta-analysis in 269,867 individuals 
identifies new genetic and functional links to intelligence Nature Genetics 50(7): 912–19.
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3.7 Polygenic indices: genomic predictors of social 
and behavioural phenotypes 

Even if researchers do not fully understand (or cannot explain) the causal biological 
mechanisms and social processes that link DNA variation to specific phenotypes, 
this lack of ‘explanation’ does not prevent use of the variants for predictive 
purposes.109 A useful analogy is smoking: the correlation between smoking and lung 
cancer was enough to drive successful public health interventions long before the 
biological pathways of carcinogenic effects were fully understood. Similarly, as 
described in Section 2.10Section 2.10, the genetic variants identified in a GWAS can be summed 
together to create a PGI that – like the smoking/lung cancer example – does not 
require knowledge of the underlying causal processes but still predicts population-
level variation in a phenotype (see Annex 5Annex 5). 

Over the past five years, the predictive power of PGIs for social and behavioural 
phenotypes has steadily increased as GWAS sample sizes have grown. This is neatly 
illustrated by the PGI for years spent in education: at the population level, the PGI 
calculated from the SSGAC’s 2018 GWAS of around 1.1 million individuals predicts 
11–13% of variation in ‘EduYears’ in independent samples.110 The 2022 PGI of around 3 
million participants predicts 12–16% of variation in ’EduYears’.111 This percentage makes 
the ‘EduYears’ PGI one of the most predictive PGIs in the behavioural sciences. 
Accounting for 12–16% of the variance makes it a stronger predictor of years spent in 
education than measures of household income and marital status, and of similar 
strength to parental educational attainment or performance on cognitive tests.112

PGIs are now available for other phenotypes related to education. For example, cognitive 
PGIs have been published that predict 6% of variation in reading skills,113 5% in general 
cognitive function (intelligence114), and 15% in tested school performance at age 16.115 
While not a direct measure of cognition, the EduYears PGI accounts for more variance 
in intelligence than the intelligence PGI, explaining 10% of individual differences.116 

109 Plomin R and von Stumm S (2022) Polygenic scores: prediction versus explanation Molecular Psychiatry 27: 49–52.

110 Lee JJ, Wedow R, Okbay A, et al (2018) Gene discovery and polygenic prediction from a genome-wide association 
study of educational attainment in 1.1 million individuals Nature Genetics 50(8): 1112–21.

111 Okbay A, Wu Y, Wang N, et al (2022) Polygenic prediction of educational attainment within and between families 
from genome-wide association analyses in 3 million individuals Nature Genetics 54: 437–49.

112 Ibid.

113 Doust C, Fontanillas P, Eising E, et al (2022) Discovery of 42 genome-wide significant loci associated with 
dyslexia Nature Genetics 54: 1621–29.

114 Okbay A, Wu Y, Wang N, et al (2022) Polygenic prediction of educational attainment within and between families 
from genome-wide association analyses in 3 million individuals Nature Genetics 54: 437–49; Savage JE, Jansen 
PR, Stringer S, et al (2018) Genome-wide association meta-analysis in 269,867 individuals identifies new genetic 
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For other phenotypes such as anxiety, depression and ADHD, PGIs predict an 
average of 4% of the variance.117 Finally, a PGI for externalising behaviours (e.g. 
hyperactivity, impulsivity, aggression) was recently published that explains 10% of 
variance, which the authors note is similar to other predictor variables including 
family income and neighbourhood disadvantage.118 

The key takeaway is that some PGIs are approaching the predictive power of 
demographic measures routinely used in the social sciences. 

The genomics research community generally seem confident that the proportion of 
population-level variance explained by PGIs will increase in the coming years as 
GWAS samples become larger; finer-grained measures of educational phenotypes 
become available (i.e. individuals are tested rather than relying on self-reported 
items, and more cohorts are linked to educational databases); rarer DNA variants are 
assessed;119 analytical strategies improve;120 and multiple PGIs for genetically 
correlated phenotypes are used.121 While there is a lack of agreement about how 
predictive PGIs will become, and within what time frame, it is generally assumed that 
the ceiling for PGI-based prediction will be no greater than the heritability estimates 
from twin studies. 

3.8 Ethically responsible scientific conduct  
and communication

As described in Section 2.6Section 2.6, GWAS researchers typically group participants into 
genetically similar populations, referred to as genetic ancestry, with the vast 
majority of educationally relevant GWASs having been conducted in populations of 
European genetic ancestry.122 Further, the results of a GWAS analysis do not ‘port’ 
well across populations. The combination of this bias and lack of portability means 
that PGIs for many phenotypes related to education are less predictive for individuals 
of non-European genetic ancestry.123 For example, the EduYears PGI derived from 
the SSGAC’s 2022 GWAS of a European genetic ancestry sample predicts 12–16% of 

117 Ibid.

118 Karlsson Linnér R, Mallard TT, Barr PB, et al. (2021) Multivariate analysis of 1.5 million people identifies genetic 
associations with traits related to self-regulation and addiction Nature Neuroscience 24: 1367–76.

119 Wainschtein P, Jain D, Zheng Z, et al (2022) Assessing the contribution of rare variants to complex trait heritability 
from whole-genome sequence data Nature Genetics 54(3): 263–73. 

120 Márquez-Luna C, Gazal S, Loh PR, et al (2021) Incorporating functional priors improves polygenic prediction 
accuracy in UK Biobank and 23andMe data sets Nature Communications 12: 6052.

121 Procopio F, Liao W, Rimfeld K, et al (2024) Multi-polygenic score prediction of mathematics, reading, and language 
abilities independent of general cognitive ability Molecular Psychiatry 31 July. 

122 Mills MC and Rahal CA (2019) A scientometric review of genome-wide association studies Communications in 
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123 Duncan L, Shen H, Gelaye B, et al (2019) Analysis of polygenic risk score usage and performance in diverse human 
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the variance in European populations but only about 2% in a sample of African 
genetic ancestry.124 There have been no massive-scale GWASs for years spent in 
education reported for more diverse populations. 

Because genomic effects are context-dependent, PGI predictions can also vary 
when the environmental conditions of a population differ from those of the discovery 
GWAS from which the PGI was derived. For example, even within the same population, 
the performance of the EduYears PGI can differ based on social and environmental 
characteristics such as age, sex and socioeconomic status.125 While this variability is 
not unexpected, it underscores the complexity of PGIs and presents a challenge to 
the equitable translation of educational genomic research findings, mirroring similar 
challenges observed in healthcare.126

Another concern arises when the results of genetic ancestry analyses performed in 
a GWAS are misappropriated or misinterpreted to imply a genetic and biological 
basis to race.127 This becomes especially problematic when combined with GWAS 
findings to suggest evidence of a biological explanation for mean differences in 
phenotype between racial groups.128 Such misinterpretations risk perpetuating 
harmful and scientifically unfounded notions of inherent racial group differences, and 
detract from addressing the true underlying drivers of these disparities – namely, 
social, environmental and historical inequities. 

In response to these risks, the scientific community is actively working to develop 
ethical guidance for best practice for GWAS researchers, and frameworks to enable 
and support responsible communication of GWAS findings to the public.129 While a 
detailed review of emerging recommendations is beyond the scope of this report, we 
summarise key points raised in conversations with experts and in the literature. 

The National Academies of Science, Engineering, and Medicine (NASEM) have 
produced evidence-based guidelines on the appropriate use of population descriptors 
such as race, ethnicity and ancestry in genomics research.130 
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They recommended that researchers provide clear definitions and justification for 
such terms in their studies, using genetic ancestry only when it is necessary to 
answer the research question. Their recommendations have already informed new 
publication standards for biomedical research journals.131 These efforts represent a 
step towards promoting more responsible research and its communication; reducing 
harmful and inaccurate typological thinking about individuals; and ensuring that all 
populations benefit from genomic advances. 

A practical set of steps relates to how researchers communicate their research 
findings to a lay audience, and how to better engage in the sociopolitical context of 
genomics research.132 For example, providing a frequently asked questions (FAQ)frequently asked questions (FAQ) 
page alongside a research article offers an opportunity to explain the context, scope 
and limitations of the research to a lay audience. This can be paired with a disclaimer 
within the research article that explicitly states how the results should not be used or 
interpreted.133 Together, these strategies may enhance public understanding and 
reduce the risk of discrimination, stigmatisation and labelling of individuals and 
groups. It can also help to discourage premature commercial, practice-based and 
policy applications of research findings. The SSGAC serves as an exemplar in this 
regard,134 and a publicly available FAQ repository for social and behavioural genomic 
research has recently been launched.135 The issue of responsible communication 
raises the broader question of whether scientific responsibility ends with publication 
of a study. Should efforts be made to track where the study is being discussed or 
misappropriated,136 and should such instances be responded to, for example, by 
writing an opinion piece or engaging with the media? While such efforts may be 
difficult for individual research groups to co-ordinate, they could be supported by 
dedicated teams at the funding, institutional, or departmental levels.137

A third recommendation is for the meaningful involvement of the public and 
communities in research about them and directly affecting them. In the cognitive 
sciences, public involvement may help to identify ethical concerns; lower barriers  
to participation; ensure research is relevant and findings are accessible; and  

131 Feero WG, Steiner RD, Slavotinek A, et al (2024) Guidance on use of race, ethnicity, and geographic origin as 
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support the diversification of data collection efforts.138 A highly collaborative form of 
public involvement is co-production research, which actively engages individuals, 
families and communities in designing and conducting research studies. This can 
help to ensure a diverse and inclusive range of perspectives, while keeping the 
research both relevant and practically applicable in real-world settings.139 

At least in the UK, there also appears to be a gap in compulsory training of  
genomics researchers in the societal and ethical implications of their work. This is 
not insurmountable: online coursesonline courses and resourcesresources, including those collated by the  
ELSI hubELSI hub, can provide researchers with some of the ethical tools they need to  
better evaluate and navigate the impact of their research.140 This could be further 
strengthened by collaboration between geneticists and bioethical experts across all 
stages of a genomic study.141 

Ensuring that genomic research on educationally relevant outcomes and phenotypes 
is conducted responsibly and communicated accurately is essential, not only for 
advancing knowledge but also for safeguarding against potential harms. Adoption of 
the steps described can help to minimise potential harms to individuals, groups and 
society, while advancing knowledge of the genetic contributions to variation in 
educationally relevant outcomes. 
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Key messages

• The predictive accuracy and portability of polygenic indices (PGIs) for 
educationally relevant phenotypes is limited, which constrains their potential 
use in educational settings. 

• The implementation of PGIs for individual prediction raises significant ethical 
concerns, including risks of inequity, discrimination, stigmatisation and 
genetic determinism.

• The real-world phenomenon of gene–environment correlation poses a 
challenge to the interpretation of both environmental and genomic research.

• Genomic data are increasingly available from large-scale cohorts and are 
being harnessed to untangle the genetic and environmental contributions to 
phenotypes related to education. 

• PGIs may offer a way to partially control for genetic confounding when 
studying environmental influences on educational outcomes.

• Integrating PGI data in family designs can help to build understanding of the 
intergenerational transmission of genetic predispositions to educationally 
relevant phenotypes.

• Gene–environment interaction research using PGIs may offer insights into 
the environments, experiences and interventions that are most effective for 
different children.

• Mendelian randomisation may help researchers to draw more reliable 
conclusions about cause and effect by using genomic data that are more 
robust to confounding and reverse causation.

• PGIs come with limitations, particularly when applied to individuals, so their use 
and interpretation across contexts requires careful consideration and expertise.

Continued > >> >

4 Challenges and 
opportunities in 
translating genomic 
insights to education
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Some of the observed differences among individuals in educational, cognitive and 
behavioural phenotypes can be attributed to DNA variation. In Section 2Section 2 we 
described the methodological approaches to discovering phenotype-associated 
DNA variants, and in Section 3Section 3 we summarised what is known – and not known – 
about these contributions. We also identified some of the ethical issues that result 
from scientific limitations, misunderstanding and misinterpretation of knowledge, 
and how concerns might be minimised.

The first part of this section explores the scientific potential, and some of the ethical 
implications of, using PGIs for individual-level prediction of educationally relevant 
phenotypes. This application has generated tension and debate in the scientific 
community, with many researchers expressing concern that use of PGIs in their 
current form for such a purpose is both scientifically and ethically problematic. 

In the second part, we examine some of the ways in which PGIs are currently being 
applied in the social and behavioural sciences as research variables as a means of 
improving understanding of environmental effects on educationally relevant 
phenotypes. While these basic research applications present new methodological 
opportunities, they, too, are debated, most notably due to the limitations and 
complexities of PGIs. 

Gene-discovery research into educationally relevant phenotypes is a dynamic field. 
GWASs continue to be conducted on increasingly larger samples, with a growing 
emphasis on the inclusion of more genetically and environmentally diverse populations 
(see Section 2.6Section 2.6). The majority of GWAS research so far has been conducted using 
adult participants, but efforts are now underway to identify common genetic variants 
associated with phenotypes in infancy and childhood.142 Discovery research efforts 
are also being expanded to consider a wider range of genetic variation, including the 
role of rare coding variants in cognitive function.143 Finally, many studies are being 
published that examine how PGIs for a specific phenotype (such as ADHD) associate 
with related phenotypes (such as education and mental health) in independent 
clinical and population cohorts.144 The pace of this research underscores the need 
for continued evaluation and consideration of both scientific and ethical implications 
to ensure that the knowledge gained is used responsibly and equitably.

142 Ronald A and Gui A (2024) The potential and translational application of infant genetic research Nature Genetics 
56(7): 1346–54. 
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144 Ronald A, de Bode N, Polderman TJC (2021) Systematic review: how the attention-deficit/hyperactivity disorder 
polygenic risk score adds to our understanding of ADHD and associated traits Journal of the American Academy 
of Child and Adolescent Psychiatry 60(10): 1234–77. 
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4.1 Polygenic indices as tools for education? 

As discussed in Section 3Section 3, PGIs have been developed for a range of behavioural and 
cognitive phenotypes and social measures – most notably years spent in education – 
that account for some of the observed differences between individuals in a population. 
A few researchers145 have suggested that as a result of this predictive power, PGIs 
hold potential for individual prediction in educational settings, though this is not a 
universally held view.146 This potential is based on the observation that PGIs can 
predict mean differences in phenotypes at the extremes. For example, Okbay et al 
(2022) grouped individuals based on their EduYears PGI, from low to high. They 
found that on average across two independent cohorts, 62% of individuals in the 
highest group (top 10% PGI) had a university degree, compared with 7% of individuals 
in the lowest group (bottom 10% PGI). A similar pattern is found for the intelligence 
PGI, where the mean IQ was 92 in the lowest PGI group and 108 in the highest.147

As a result of these observed differences at the PGI extremes, it has been suggested 
that PGIs might feasibly be used as indicators of an individual’s genomic predisposition 
to specific phenotypes, in order to personalise education and learning. Educational 
curricula, learning environments or teaching styles could be tailored to an individual 
based on their PGI, with a focus on identifying and supporting those who are  
more likely to experience difficulties in school. However, as already discussed, a 
critical caveat is that these findings may not generalise to everyone or to all 
educational contexts, as the populations on which they are based are genetically  
and socioeconomically homogeneous. 

145 Plomin R and von Stumm S (2018) The new genetics of intelligence Nature Reviews Genetics 19(3): 148–59; Plomin 
R (2018) Blueprint: how DNA makes us who we are (Cambridge, MA: The MIT Press).

146 Meyer MN, Appelbaum PS, Benjamin DJ, et al (2023) Wrestling with social and behavioral genomics: risks, potential 
benefits, and ethical responsibility Hastings Centre Report 53(1): S2–49.

147 Plomin R and von Stumm S (2018) The new genetics of intelligence Nature Reviews Genetics 19(3): 148–59.
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Figure 3: Scatterplot of the relationship between the EduYears PGI derived  
from Okbay et al’s 2022 GWAS of ~3 million individuals and reported years  
spent in education for two independent cohorts, the National Longitudinal  
Study of Adolescent to Adult Health (Add Health) and the Health and  
Retirement Study (HRS).

This image is reproduced from Okbay et al (2022) under a Creative Commons Attribution 4.0 International 
License. To view the license, visit http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/. No changes were made 
to the original material. SourceSource.

Figure 3 shows the relationship between the EduYears PGI (x-axis) and measured 
years in education (y-axis), with each point representing an individual. While there is 
an overall positive correlation between the PGI and years in education, there is a 
large amount of variability, even at the extremes of PGI values. 

While PGIs can explain a chunk of population variance, they – like all predictors – are 
not accurate at the individual level. As a result, researchers have stated that PGIs for 
social and behavioural phenotypes are limited as tools for individual prediction.148 
The FAQs accompanyingFAQs accompanying the SSGAC’s latest GWAS of years spent in education 
clearly states this, warning that “it is important that participants/users understand 
that these individual results are not meaningful predictions and should be regarded 
essentially as entertainment. Failure to make this point clear risks sowing confusion 
and undermining trust in genetics research.” 

148 Meyer MN, Appelbaum PS, Benjamin DJ, et al (2023) Wrestling with social and behavioral genomics: risks, potential 
benefits, and ethical responsibility Hastings Centre Report 53(1): S2–49.
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This warning was given because the average differences observed between extremes 
of PGIs mask a wide range of individual differences. For example, Figure 3Figure 3 illustrates 
that many individuals with a very high EduYears PGI spent fewer years in education 
than individuals with a very low PGI, and vice versa. The lack of predictive accuracy is 
because the PGI does not capture all the genomic influence on years spent in 
education. Even if it did, heritability for this measure is not 100%, and environmental 
context may modify or override PGI influences. 

The best available predictor of an individual’s educational achievement is prior 
attainment, measures of which are routinely collected as part of standard classroom 
practice or through standardised tests and public examinations, accounting for a 
high level of variance in later achievement.149 Unlike PGIs, however, prior achievement 
data require a history of schooling and, as such, are not available at birth. By contrast, 
DNA differences are fixed and can be used to make predictions – in theory – from 
the moment of conception, or before schooling begins.150

How well does the EduYears PGI predict realised educational achievement, and how 
does it compare to other student background data readily available to schools, such 
as student age and sex151, eligibility for free school meals, special educational needs 
status, and parental social background? Morris et al (2020) examined these 
questions in a UK cohort using the SSGAC’s 2018 EduYears PGI. They found that 
while children with a higher PGI, on average, had higher exam scores than those with 
a lower PGI, at the individual level, the PGI was less accurate in predicting achievement 
than parental years of education and socioeconomic position.152 However, parental 
background information is not always available, and parental predictors cannot 
distinguish between children within the same family. In contrast, PGIs are specific to 
an individual and, as such, can differentiate children within the same family.

Education already provides real-world examples where imperfect and ‘noisy’ 
predictors of individual achievement are problematic.153 For instance, in England, 
students’ prior achievement at Key Stage 2 is sometimes used to set target grades 
for GCSE subjects. The accuracy of these targets can vary, yet student, parent and 
teacher expectations often fail to account for this uncertainty.154
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So where does the science leave us? The performance of PGIs at the population 
level is expected to improve as the science advances and as PGIs are integrated with 
additional data. However, even with these developments, it seems likely that PGIs at 
best might serve as soft indicators to guide educational support and intervention, 
but not as deterministic predictors of individual educational outcomes. For instance, 
just as advances in medical genomics have allowed for early interventions in specific 
health conditions, PGIs might one day help educators and parents understand why a 
child is struggling with a particular skill, such as reading. Instead of a teacher simply 
noting that a child in Year 2 is taking longer than most to read well, PGI-informed 
insights might offer an additional piece of information that could help guide educational 
decision making and support. 

Yet even a ‘softer’ approach to translation in educational settings brings with it a host 
of ethical considerations that cannot be overlooked. While identifying children more 
likely to experience educational difficulties – especially those related to special 
educational needs and difficulties (SEND) – is a valuable goal, potential future 
implementation of PGIs for this purpose could unintentionally worsen inequities. 
Given that SEND provision is limited and often depends on securing an Education, 
Health, and Care Plan (EHCP), for which a case must be made, if PGIs were ever used 
as evidence to support such cases, issues could arise about unequal access; with 
families who are more informed or resourced potentially better positioned to leverage 
this opportunity. Similar challenges are already evident for ADHD and dyslexia, 
where access to opportunities for diagnosis, and therefore support, may reflect 
socioeconomic disparities. Additional ethical concerns include the potential for 
discrimination (taking adverse action against a person or group based on their PGI) 
and stigmatisation (viewing a person or group as ‘less’ than others based on their 
PGI), as well as the emotional and behavioural impact of knowledge about one’s PGI 
(the idea of self-fulfilling prophecies). Some of these concerns also apply to non-
genetic measures used to predict future educational outcomes. For example, 
cognitive test scores at age 11 – far more accurate predictors of future achievement 
than PGIs – have been used in England to stream children into grammar schools. 
This practice remains highly controversial, as it relies on test scores measured with 
error to allocate children to entirely different educational systems. The same issues 
apply to PGIs, whether the intention is to allocate children to different educational 
settings or to identify those with specific educational needs. This highlights the 
broader challenges of ensuring that predictive measures in education, whatever their 
source, are implemented in ways that avoid reinforcing inequities or fostering 
deterministic views of children’s potential.

Questions have also been raised about how ownership, privacy and anonymity would 
be safeguarded if PGIs were to be used for individual prediction, particularly in relation 
to complex data linkage streams that would be needed. For instance, the Information 
Commissioner’s Office (ICO) – the UK’s data protection and information rights body – 
has recently produced a ‘Tech Futures’ genomics report‘Tech Futures’ genomics report that highlights challenges 
surrounding data security, transparency and consent, purpose of use, and implications 
of PGI information for other family members.

https://ico.org.uk/about-the-ico/research-reports-impact-and-evaluation/research-and-reports/technology-and-innovation/ico-tech-futures-emerging-genomics/


Navigating genomics and education: insights, opportunities and challenges 54

A particular ethical concern noted in this report and in the academic literature is the 
premature commercial application of PGIs for social and behavioural phenotypes via 
poorly regulated direct-to-consumer (DTC) companies (see Section 5.3Section 5.3).155 As 
discussed in Section 3.8Section 3.8, this particular risk might be minimised by embedding 
unambiguous statements in research outputs about what cannot be done with PGIs, 
or by adding a Creative Commons ‘Attribution Non-Commercial Share Alike 4.0 
International (CC BY-NC-SA 4.0)’ licence that would require permission to be sought 
from the lead researchers for use of the GWAS summary data.156 

There are also worries that poor genomic literacy might lead to genetic determinism – 
the mistaken belief that a PGI alone determines an outcome, with little or no role for 
the environment or individual agency. Some studies have shown that while genomic 
literacy is improving over time in society, there is still much room for improvement.157 
Educational interventions to improve genomic literacy among the general public, 
school-aged children and educational professionals is widely recognised by the 
experts we spoke to and in the literature as an issue requiring urgent attention.158 

Genomic information is set to become more mainstream in society in the coming 
years as genomic analyses become increasingly accessible to the public via DTC 
companies; as Genomics EnglandGenomics England begins testing babies for 200 rare treatable 
genetic conditions; and as Our Future HealthOur Future Health communicates PGI results to research 
participants. We revisit some of these issues in Section 5Section 5. It is worth noting that many 
of these concerns are also present in genomic healthcare researchalso present in genomic healthcare research.

4.2 PGIs as tools for basic research

While individual prediction using PGIs is a topic of much debate, a less contested 
application of educationally relevant PGIs is to incorporate them as research 
variables to enable genetically informed social science and educational research. 

Such research requires genomic variation or PGI data for each research participant 
to be accessible to researchers. Unlike traditional genetically informed approaches, 
it does not require specialised study designs such as twin or adoption cohorts, 
although deeper insights can be gained by combining PGIs with family (sibling, 
parent–offspring) structures.159 Additionally, because PGIs explain more variation 
than individual genetic variants, when a PGI is already available, statistically well-

155 De Hemptinne MC and Posthuma D (2023) Addressing the ethical and societal challenges posed by genome-wide 
association studies of behavioral and brain-related traits Nature Neuroscience 26(6): 932–41.

156 Ibid.

157 Little ID, Koehly LM, and Gunter C (2022) Understanding changes in genetic literacy over time and in genetic 
research participants American Journal of Human Genetics 109(12): 2141–51.

158 Asbury K, McBride T, and Rosie B (2022) Can genomic research make a useful contribution to social policy? Royal 
Society Open Science 9(11): 220873.

159 Harden KP and Koellinger PD (2020) Using genetics for social science Nature Human Behaviour 4: 567–76.
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powered studies can be performed with only a few hundred research participants. 
This feasibility of integrating PGIs into study designs is supported by the development 
of resources such as the PGS CatalogPGS Catalog, the Polygenic Index RepositoryPolygenic Index Repository and the PRS PRS 
Knowledge BaseKnowledge Base. These repositories allow researchers to calculate and evaluate 
PGIs in large research cohorts, and – when genomic data are available – in their own 
research datasets. The latter may be a source of issues, as generating PGIs from 
individual-level genetic data requires specialist skills and knowledge and is complicated 
by the variety of tools available.160 

These methodological opportunities are being facilitated by the increasing availability 
of cohorts with both PGI and environmental measures that are, in some instances, 
securely linked to national education data. For example, in England’s Millennium 
Cohort Study (MCS), PGIs (but not raw genomic data) can be securely imported into 
the UK Data ServiceUK Data Service SecureLab and linked to the Department for Education’s 
National Pupil Database (NPDNational Pupil Database (NPD). This allows MCS researchers to perform PGI-informed 
research that seeks to untangle the social, environmental and genomic contributions 
to differences in attainment, exclusion and pupil absences. 

We highlight a selection of key applications from the literature in the following 
subsections, including research funded by the Nuffield Foundation. The utility of PGIs 
in social science research is a topic of some discussion, as evidenced by a recent 
review article161 that garnered 24 academic commentaries reflecting a broad 
spectrum of views. One criticism is that PGIs can capture confounding (see Section Section 
2.82.8) and may reflect effects mediated by or conditional on environmental factors. 
Consequently, PGIs do not offer a complete or ‘clean’ separation of genetic and 
environmental influences. Moreover, as discussed in Section 4.1Section 4.1, the predictive 
accuracy of PGIs varies, even within a genetically homogeneous population.

4.3 Partial control of genetic confounding in 
observational research

Identifying modifiable environmental factors that influence educational outcomes is 
a key objective for social scientists, as this knowledge can guide interventions. 
However, gene–environment correlation presents a challenge in this endeavour, as 
it suggests that associations between environmental factors and educational 
outcomes may be influenced by genetic factors (genetic confounding). This may 
complicate efforts to pinpoint environmental factors as causal points of intervention.

A range of established genetically informed methods can control for genetic 
confounding when examining links between environmental or social predictors and 

160 Ni G, Zeng J, and Revez JA (2021) A comparison of ten polygenic score methods for psychiatric disorders applied 
across multiple cohorts Biological Psychiatry 90(9): 611–20.

161 Burt CH (2023) Challenging the utility of polygenic scores for social science: environmental confounding, 
downward causation, and unknown biology Behavioral and Brain Sciences 46: e207. 
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child educational outcomes, such as twin, adoption, children-of-twin and sibling 
comparison studies.162 PGIs offer a new approach that can partially account for, or at 
least allow researchers to acknowledge, the presence of genetic confounding in 
observational datasets. Specifically, researchers can assess whether the association 
between an environmental variable and an outcome weakens after accounting for 
participants’ genetic propensities as indexed by a PGI for the outcome of interest.163

Pingault et al (2021) applied this approach in a UK twin cohort, using the EduYears 
PGI to examine the observed association between maternal education and child 
ADHD and educational achievement.164 After taking the PGI into account, the 
strength of the relationships reduced. This finding does not negate the role of parental 
education in child development, but it suggests that a portion of the observed 
relationship (in this instance) is mediated by the genetic effects – and any other 
effects – captured by the EduYears PGI. 

This has implications for social science research. Failing to account for genetic 
confounding might lead to misleading conclusions about the causal effects of 
environments,165 wasting research resources and leading to ineffective interventions 
or even harm.166 At a minimum, recognising and addressing genetic confounding can 
help researchers to more clearly and precisely identify the effects of environmental 
and social factors on child educational outcomes.167 This approach is not perfect. 
PGIs only partially control for genetic confounding (due to missing heritability), and 
they capture environmental factors in ways that researchers are only starting to 
unpick. So, while controlling for a PGI will remove some genetic confounding, it may 
also remove some important environmental variation. 

These complex issues underscore the growing importance of cross-disciplinary 
collaboration between behavioural and statistical geneticists, developmentalists and 
social scientists. For example, researchers with expertise in genomic data analysis 
and the development of PGIs may lack the in-depth knowledge of the educational 
system or epidemiological analyses that other scientists bring. Combining expertise 
across disciplines will help to ensure that basic genomic research is not only 
methodologically robust, but also relevant to real-world educational settings and 
child development.

162 Jami ES, Hammerschlag AR, Bartels M, et al (2021) Parental characteristics and offspring mental health and 
related outcomes: a systematic review of genetically informative literature Translational Psychiatry 11: 197.

163 Pingault JB, Allegrini AG, Odigie T, et al (2022) Research review: how to interpret associations between polygenic 
scores, environmental risks, and phenotypes Journal of Child Psychology and Psychiatry 63(10): 1125–39.

164 Pingault JB, Rijsdijk F, Schoeler T, et al (2021) Genetic sensitivity analysis: adjusting for genetic confounding in 
epidemiological associations PLOS Genetics 17(6): e1009590. 

165 Jaffee SR and Price TS (2012) The implications of genotype-environment correlation for establishing causal 
processes in psychopathology Developmental Psychopathology 24(4): 1253–64.

166 Hart SA, Little C, and van Bergen E (2021) Nurture might be nature: cautionary tales and proposed solutions NPJ 
Science of Learning 6(1): 2.

167 Harden KP and Koellinger PD (2020) Using genetics for social science Nature Human Behaviour 4: 567–76.
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4.4 Intergenerational transmission of educational 
risk and resilience 

Just as the interdependence of genes and environments can bias estimates of 
environmental influences, it can also bias estimates from molecular genomic studies, 
such as GWASs. As discussed in Section 2Section 2, the common practice of using unrelated 
samples in a GWAS can induce links (correlations) between an individual’s phenotype 
and their genotype that are non-causal. This can arise through several mechanisms, 
one of which is gene–environment correlation. 

The increased availability of genomic datasets for families (such as siblings, or 
parent–child trios) is starting to provide new ways to examine which types of gene–
environment correlation impact the detection and estimation of genetic effects on 
phenotypes that relate to education.168 For instance, jointly modelling genomic and 
phenotypic data from families allows researchers to examine how phenotype-
associated genetic variants that are not shared between parents and children still 
impact child outcomes via environmental routes. 

It is apparent from these new approaches that the EduYears PGI contains a 
substantial portion of non-causal (‘indirect’) associations. The first study of this kind 
used genomic and phenotypic data from trios to demonstrate that genetic variants 
associated with years in education that were not inherited by the child still predicted 
the length of time that the child spent in education.169 

This demonstrates that the parental EduYears PGI is capturing some aspects of the 
shared environment that correlate with child outcomes. In essence, the PGI captures 
not only genetic variants acting directly in the individual, but also indirect influences 
of parental genotypes on child phenotypes that are operating via environmental 
paths, referred to as ‘genetic nurture’ or ‘dynastic’ effects. 

A recent meta-analysis funded by the Nuffield Foundation found that about one-third 
of the variance accounted for by the EduYears PGI is due to genetic nurture effects.170 
Family-based methods are starting to be applied to a wider range of PGIs that relate 
to education in order to obtain estimates of genetic effects that are independent of 
genetic nurture and other confounding influences.171

168 Harden KP and Koellinger PD (2020) Using genetics for social science Nature Human Behaviour 4: 567–76.

169 Kong A, Thorleifsson G, Frigge ML, et al (2018) The nature of nurture: effects of parental genotypes Science 
359(6374): 424–8.

170 Wang B, Baldwin JR, Schoeler T, et al (2021) Robust genetic nurture effects on education: a systematic review and 
meta-analysis based on 38,654 families across 8 cohorts American Journal of Human Genetics 108(9): 1780–91. 

171 McAdams TA, Cheesman R, and Ahmadzadeh YI (2023) Annual research review. Towards a deeper understanding 
of nature and nurture: combining family-based quasi-experimental methods with genomic data Journal of Child 
Psychology and Psychiatry 64: 693–07.
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An unresolved question is what the environmental ‘genetic nurture’ paths are. 
Incorporating parental phenotypes or measured environments into family-based  
PGI studies can help researchers to determine whether genetic nurture effects  
act through specific processes, such as parenting behaviours or the influence of 
extended family members.172 For example, the Nuffield-funded Wang et al study 
reported that genetic nurture effects can largely be accounted for by parental 
education and socioeconomic status, providing new insights into how inequalities  
are transmitted within families.173 

Another question is how much it matters that real-world indirect processes are being 
indexed by the EduYears PGI. If the goal is to understand the direct effects of an 
individual’s own genetic make-up on education, accounting or controlling for indirect 
effects becomes important. For instance, it is possible that direct genetic effects 
might reveal a little more about the underlying biology of a phenotype. 

One way to achieve this is by performing within-family GWASs that include at  
least two members of the same family.174 However, this design requires genomic  
data from families (two generations, or siblings), which are harder to recruit than 
unrelated individuals. As a result, few large family-based GWASs of social and 
behavioural phenotypes that relate to education have been conducted. Those that 
have been conducted indicate that much of the prediction for EduYears and 
cognitive function PGIs comes from factors other than the direct effects of an 
individual’s own genetic make-up.175

In contrast, if the goal is to maximise the predictive power of a PGI for a given 
population, it has been argued that biases and confounding from indirect effects  
do not necessarily need to be accounted for, as PGIs might still be useful even when 
biases are present.176 For example, yellowed fingers are not a causal factor in lung 
disease but serve as a good predictor of smoking, which therefore provides 
information about a person’s chances of developing lung disease. Similarly, some 
academics suggest that the additional predictive power contributed by indirect 
effects might be practically useful for identifying groups of individuals who are  
more likely to face challenges in education, where they have not already been 
identified as such.177

172 Nivard MG, Belsky DW, Harden KP, et al (2024) More than nature and nurture, indirect genetic effects on children’s 
academic achievement are consequences of dynastic social processes Nature Human Behaviour 8(4): 771–8.

173 Wang B, Baldwin JR, Schoeler T, et al (2021) Robust genetic nurture effects on education: a systematic review and 
meta-analysis based on 38,654 families across 8 cohorts American Journal of Human Genetics 108(9): 1780–91.

174 Howe LJ, Nivard MG, Morris TT, et al (2022) Within-sibship genome-wide association analyses decrease bias in 
estimates of direct genetic effects Nature Genetics 54: 581–92.

175 Ibid; Okbay A, Wu Y, Wang N, et al (2022) Polygenic prediction of educational attainment within and between 
families from genome-wide association analyses in 3 million individuals Nature Genetics 54: 437–49.

176 Plomin R and von Stumm S (2022) Polygenic scores: prediction versus explanation Molecular Psychiatry 27: 49–52.
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4.5 Searching for gene–environment interactions

GWASs average out environmental influences in the samples studied, allowing 
genetic associations to be detected without directly considering environmental or 
educational contexts. However, given the known contribution of these factors to 
educational outcomes developmentally, it is important to understand whether 
genetic effects identified in a GWAS differ by, or are conditional on, environment: a 
phenomenon known as gene–environment interaction (GxE).178 

GxE is conceptually distinct from gene–environment correlation. The latter is about 
the way that certain environments tend to occur with certain genotypes. GxE is 
concerned with how genes and environments combine multiplicatively so that if the 
environment is changed for a certain genotype (such as a low EduYears PGI), the 
outcome will be different. A classic example is the treatment of the monogenic 
disorder PKU, where altering the environment through a low-phenylalanine diet 
mitigates the genetic effect (see Section 2.4Section 2.4). In education, environments span 
various levels, including biological (e.g. epigenetic alterations, the microbiome), 
school (e.g. teaching quality or method, resources), family (e.g. parental income, 
stressful life events), neighbourhood (e.g. crime, access to green space, pollution), 
and broader societal factors.

GxE research is highly relevant to translation, as it offers insights into how modifiable 
environmental factors may differentially affect children with a genetically higher (or 
lower) likelihood of experiencing poorer educational outcomes. 

Historically, environments have been easier to measure than genetic variation, limiting 
early studies to twin designs that assessed whether heritability estimates varied as a 
function of specific environments.179 With the advent of molecular genomic studies 
(see Section 2.5Section 2.5), GxE research shifted towards looking for interactions between 
candidate gene variants and social and behavioural phenotypes. However, many 
candidate gene interaction studies failed to replicate due to a lack of statistical 
power (i.e. small sample sizes), and most reported candidate gene associations are 
now known to have been false.180

The advent of PGIs has reinvigorated GxE studies because – unlike single variants – 
PGIs can reliably predict a portion of the observed differences in phenotypes among 
children and adolescents.181 To date, GxE research using PGIs that relate to education 

178 Kendler KS and Eaves LJ (1986) Models for the joint effect of genotype and environment on liability to psychiatric 
illness American Journal of Psychiatry 143(3): 279–89.

179 Purcell S (2002) Variance components models for gene–environment interaction in twin analysis Twin Research 
5(6): 554–71.

180 Dick DM, Agrawal A, Keller MC, et al (2015) Candidate gene–environment interaction research: reflections and 
recommendations Perspectives on Psychological Science 10(1): 37–59.

181 Wilding K, Wright M, and von Stumm S (2024) Using DNA to predict education: a meta-analytic review Educational 
Psychology Review 36: 102.
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is still in its early stages, and findings are mixed. For example, several studies,182 
including one funded by the Nuffield Foundation,183 did not find interactions between 
PGIs and family environments in relation to child academic achievement. However, a 
recent, large Norwegian birth cohort study identified an interaction between students’ 
EduYears PGI and school environment. This study found that the influence of 
students’ PGIs on academic achievement differed by school, with higher-performing 
schools weakening the influence of a lower PGI.184 Similarly, a US study found that 
students with a lower EduYears PGI were less likely to drop out of maths classes if 
they attended socioeconomically advantaged schools.185

The picture is similarly mixed for PGI-based GxE research into childhood mental 
health symptoms and neurodevelopmental conditions, with both significant186 and 
non-significant interactions reported.187 

These inconsistent findings have been attributed partly to the fact that PGI-based 
GxE studies require larger sample sizes than are typically available. For instance, in a 
Nuffield-funded study it was estimated that a minimum sample size of 4,000 would 
be needed to detect mid-sized interaction effects, rising to 75,000 for smaller 
effects.188 Additionally, while many GxE studies use the same PGI, they examine 
different environmental factors measured in varying ways. This lack of consistency 
makes it difficult to directly compare findings across studies.189

Lastly, if the environments modelled are themselves more similar for genetically similar 
individuals (gene–environment correlation), the results can be misleading.190 It is 
possible to control for such correlation in interaction studies by using family-based 
designs, but a particular challenge here, as previously noted, is the lack of large 
research cohorts that collect both genomic and phenotype data for related individuals.

182 Allegrini AG, Karhunen V, Coleman JRI, et al (2020) Multivariable G-E interplay in the prediction of educational 
achievement PLoS Genetics 16(11): e1009153.

183 Von Stumm S, Kandaswamy R, and Maxwell J (2023) Gene–environment interplay in early life cognitive 
development Intelligence 98: 101748.

184 Cheesman R, Borgen NT, Lyngstad TH, et al (2022) A population-wide gene–environment interaction study on how 
genes, schools, and residential areas shape achievement NPJ Science of Learning 7: 29.

185 Harden KP, Domingue BW, Belsky DW, et al (2020) Genetic associations with mathematics tracking and 
persistence in secondary school NPJ Science of Learning 5: 1; a summary of Nuffield-funded GxE research using 
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As genomic datasets continue to grow, these challenges will be addressed, although 
the timeline remains uncertain. Gene–environment interaction research was 
highlighted by some experts we spoke to as having the greatest potential for translation 
into education practice and policy, as it may identify which environments and 
interventions are most effective for different children.

4.6 Using polygenic indices to improve  
intervention studies 

Many of the researchers we consulted noted issues with how educational intervention 
studies are designed and assessed. The primary point raised (and also noted in the 
literature) was that interventions do not work for every child, all of the time. By looking 
only for average effects of an intervention, children for whom the intervention is more 
or less effective – perhaps for genomic reasons – are not identified. To our knowledge, 
PGIs have not yet been incorporated into educational trials from the outset. 

Another point raised is that as some PGIs, such as the EduYears PGI, predict a 
reasonable portion of phenotype variability, they can be used as control variables in 
educational randomised controlled trials and intervention studies to account for 
uninformative ‘noise’ in the data.191 By reducing heterogeneity in this way – which is 
otherwise difficult to capture – statistical power is boosted, allowing such studies to 
be conducted using fewer research participants. A rough calculation by Meyer et al 
(2023) on two US intervention studies estimated that including an EduYears PGI as a 
control variable could allow for sample sizes to be reduced by 6.7%, even after 
accounting for the costs of collecting genomic data. 192 

The authors note that expected resource savings will depend on how much additional 
variance the PGI accounts for, which will differ depending on the specific PGI used. 
Additionally, the poor transferability of PGIs across genetic ancestries will present 
challenges. It seems likely that collecting genomic data as an inclusion criterion in 
educational trials could hinder participant recruitment and raise ethical concerns, 
such as ones around data privacy, that would need to be addressed.193

191 Meyer MN, Appelbaum PS, Benjamin DJ, et al (2023) Wrestling with social and behavioral genomics: risks, potential 
benefits, and ethical responsibility Hastings Centre Report 53(1): S2–49.

192  bid.

193 Fahed AC, Philippakis AA, and Khera AV (2022) The potential of polygenic scores to improve cost and efficiency of 
clinical trials Nature Communications 13: 2922.
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4.7 Mendelian randomisation: using genetic 
information to query causal relationships

Research based on observational data – meaning studies that analyse information 
collected without manipulation of conditions or conducting controlled experiments – 
has demonstrated that educational measures correlate with many important health 
and economic outcomes.194 As discussed, disentangling cause and effect from 
observational data is difficult (see Section 2.8Section 2.8). For example, consider the replicated 
correlation between adolescent depression and later educational outcomes, where 
at a population level, depression can precede failure to complete compulsory 
schooling and lower grades.195 Other unknown or unmeasured factors, such as 
socioeconomic status, may causally impact both school outcomes and likelihood of 
depression, making it look like there is a relationship between the two when there is 
not (i.e. socioeconomic status is a confounder). Alternatively, educational difficulties 
may make it more likely that an individual experiences depression symptoms (i.e. 
reverse causation), although this can be examined using longitudinal data. Evidence 
of the direction of causality between a risk factor (also referred to as an ‘exposure’) 
and a phenotype of interest (outcome) is a requirement for effective intervention 
strategies and estimation of their impact.196

Genomic data can potentially be used to strengthen observational data and draw 
more reliable conclusions about cause and effect. One approach is Mendelian 
randomisation (MR), which parallels the principles of randomised controlled trials. 
Instead of random allocation to conditions, MR uses genetic variants associated with 
the risk factor of interest to avoid confounding and reverse causation (see Figure 4Figure 4). 

MR works by taking advantage of the fact that alleles of a genetic variant are 
randomly inherited from parent to child. Because inheritance of DNA variation is 
unrelated to environmental factors, these factors by definition cannot be confounders, 
unlike in traditional observational research. Furthermore, because alleles are fixed at 
conception, the possibility of reverse causation is eliminated.197 

194 Farquharson C, McNally S, and Tahir I (2024) Education inequalities Oxford Open Economics 3(1): i760–820.

195 Riglin L, Petrides KV, Frederickson N, and Rice F (2014) The relationship between emotional problems and 
subsequent school attainment: a meta-analysis Journal of Adolescence 37: 335-46.
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research Nature Reviews Genetics 19: 566–80.

197 Chen LG, Tubbs JD, Liu Z, Thach TQ, and Sham PC (2024) Mendelian randomization: causal inference leveraging 
genetic data Psychological Medicine 54(8): 1461–74.
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Figure 4: An overview of Mendelian randomisation 

In the MR method, genetic variants must be associated with the risk factor, but  
not with any other factors that affect the outcome. This ensures that any association 
between the genetic variant and the outcome must occur only through the variant’s 
relationship with the risk factor, implying a causal effect of the risk factor on  
the outcome.198

For example, suppose a simplified hypothetical scenario where individuals with more 
copies of the A allele for a variant associated with years spent in education (but are 
not associated with depression) stay in education for longer than individuals with 
fewer copies of the A allele (i.e. 2 > 1 > 0). If individuals with more copies of the A allele 
report fewer depression symptoms, then researchers can estimate the causal effects 
of years in education on depression. The effect of the education-associated variant 
on depression is operating only through education, implying that more time spent in 
education causally decreases risk for depression. 

MR has been successfully applied in medical contexts to demonstrate causal 
relationships in health, for example between blood lipid levels and myocardial 
infarction.199 It is also starting to be used to query the causal relationship between 
years spent in education and later life outcomes such as Alzheimer’s disease.200

198 Burgess S, Davey Smith G, Davies NM, et al (2023) Guidelines for performing Mendelian randomization 
investigations: update for summer 2023 Wellcome Open Research 4: 186.

199 Voight BF, Peloso GM, and Orho-Melander M (2012) Plasma HDL cholesterol and risk of myocardial infarction: a 
mendelian randomisation study Lancet 380(9841): 572–80.

200 Seyedsalehi A, Warrier V, Bethlehem RAI, Perry BI, Burgess S, and Murray GK (2023) Educational attainment, 
structural brain reserve and Alzheimer’s disease: a Mendelian randomization analysis Brain 146(5): 2059–74.
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However, in order for valid conclusions to be drawn from a Mendelian randomisation 
analysis, several assumptions must be met. Specifically, MR requires that (1) the 
genetic variant robustly associates with the risk factor, (2) the genetic variant is not 
associated with the outcome via a confounding path, and (3) the variant does not 
affect the outcome directly, only indirectly via the risk factor201 (see Figure 5).

This last assumption can be difficult to meet because (as described in Section 3.2Section 3.2) 
many of the variants identified in a GWAS are pleiotropic and associate with more 
than one phenotype. If genetic pleiotropy is ‘horizontal’ (the variant associates with 
the outcome via paths independent of the risk factor), the assumption is violated. 

Figure 5: The assumptions for Mendelian randomisation

Figure 5 illustrates that Mendelian randomisation aims to estimate the causal effect 
of one variable (the risk factor) on another (the outcome) using a genetic variant  
(‘genetic instrument’) to control for any unmeasured confounders. 

If the assumptions of MR are not met, results may be biased,202 although newer 
developments in MR methods can relax or test these assumptions.203 Further, it is 
unclear how the presence of assortative mating and genetic nurture effects 
complicate the interpretation of MR results.204 Both effects are present for genetic 
variants associated with years spent in education. 

201 This is vertical pleiotropy, where the association of the variant with a phenotype is completely mediated by an 
intermediary phenotype. Horizontal pleiotropy is where the variant operates through multiple pathways, which 
violates Mendelian randomisation assumptions, making interpretation of results difficult. 

202 De Leeuw C, Savage J, Bucur IG, Heskes T, and Posthuma D (2022) Understanding the assumptions underlying 
Mendelian randomization European Journal of Human Genetics 30(6): 653–60.

203 Burgess S and Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger 
method European Journal of Epidemiology 32(5): 377–89.

204 Brumpton B, Sanderson E, Heilbron K, et al (2020) Avoiding dynastic, assortative mating, and population 
stratification biases in Mendelian randomization through within-family analyses Nature Communications 11: 3519.
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Some of the researchers we spoke to think that the addition of MR analyses to social 
scientists’ analytical toolkits will usefully contribute to educational epidemiological 
research. However, researchers also cautioned that this method requires extremely 
careful study design and interpretation, because it’s often unclear whether all 
assumptions can be met – especially for complex, pleiotropic traits like years in 
education or educational achievement
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In the previous section we described how PGIs are being applied in basic research, 
and the scientific and ethical limitations of harnessing PGIs for individual prediction. 
In researching this report, we also uncovered several data gaps that have not yet 
been described. 

In this section, we consolidate these insights to highlight key open questions and 
limitations, why they matter for translation, and some of the ethical implications of 
leaving them unresolved. We also hope to stimulate thinking about research priorities 
and the identification of plausible, ethical routes from basic science to meaningful 
translation, while highlighting both the risks and opportunities that lie ahead. 

5.1 Polygenic indices as research tools for translation

As outlined in  Section 4.2Section 4.2, the application of PGIs as research tools presents 
opportunities to unpick gene–environment correlations, deepen understanding of 
environmental causes, and explore the scope for changing educational outcomes. In 
the medium-to long-term, these approaches may inform social and educational 
policies and practice. However, the use of PGIs in a research context is not without 
challenges: scientific, practical and ethical. 

In addition to the diversity problem, PGIs do not capture the entire genomic influence 
on a phenotype, making them an imperfect tool to control for genomic confounding. 
Additionally, PGIs may index not only the direct effects of an individual’s own genotype 
but the indirect effects of their genetic relatives and demography. While not a perfect 
solution, family genomic data (siblings or parent–child trios) can help to distinguish 
between direct and indirect genetic effects and better control for other sources of 
confounding, such as population stratification.205 However, large family-based 
genomic resources remain scarce. 

205 Howe LJ, Nivard MG, Morris TT, et al (2022) Within-sibship genome-wide association analyses decrease bias in 
estimates of direct genetic effects Nature Genetics 54: 581–92.

5 Implications for 
research, education 
practice and policy 
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The need for large sample sizes to detect associations for highly polygenic phenotypes 
often leads to researchers relying on poorly measured phenotypes, as they must 
default to the lowest common denominator of phenotype when harmonising across 
cohorts. A related issue raised by some researchers is that GWAS efforts tend to 
prioritise ever larger studies of phenotypes above improving the ways they are 
measured. Further, the purpose of education is much broader than the accumulation 
of knowledge and certificates: phenotypes such as resilience, communication skills, 
self-regulation and curiosity,206, as well as behavioural problems and conditions such 
as motor disorders are also important – but comparatively underexamined.207

Researchers are tackling these data gaps by employing novel statistical methods 
using existing datasets, but these approaches are technically complex to perform 
and interpret.208 Ultimately, once GWAS sample sizes have been maximised using 
existing data, better and more diverse phenotype measurements will be needed for 
deeper and more holistic insights. 

One particular challenge lies in collecting high-quality, detailed phenotypic data in 
sample sizes large enough to identify phenotype-associated genetic variants.209 This 
is being addressed through the development of gamified online cognitive tests,210 
phenotype imputation,211 the use of data collected from personal digital devices 
(‘digital phenotyping’) and sensing technologies212, and globally coordinated efforts to 
gather detailed phenotype data (e.g. see GenLangGenLang). However, careful consideration 
of the implications for data privacy and surveillance is needed.213

Until this data gap is bridged, there is a risk that genetically informed research will 
overlook vital aspects of behaviour and functioning that influence education and later life 
outcomes, such as employment. This may perpetuate inequalities by prioritising narrow 
measures of attainment and cognitive skills over ‘softer’ transferrable skills, such as 
teamwork and interpersonal communication, that are of value to employers and society. 

206  Kautz T, Heckman JJ, Diris R, Ter Weel B, and Borghans L (2014) Fostering and measuring skills: improving 
cognitive and non-cognitive skills to promote lifetime success, OECD Education Working Paper 110  
(Paris: OECD Publishing).

207 Gidziela A, Ahmadzadeh YI, Michelini G, et al (2023) A meta-analysis of genetic effects associated with 
neurodevelopmental disorders and co-occurring conditions Nature Human Behaviour 7(4): 642–56.

208 Demange PA, Malanchini M, Mallard TT, et al (2021) Investigating the genetic architecture of noncognitive skills 
using GWAS-by-subtraction Nature Genetics 53: 35–44.

209 Yeatman JD, Tang KA, Donnelly PM, et al (2021) Rapid online assessment of reading ability Scientific Reports  
11: 6396.

210 Malanchini M, Rimfeld K, Gidziela A, et al (2021) Pathfinder: a gamified measure to integrate general cognitive ability 
into the biological, medical, and behavioural sciences Molecular Psychiatry 26: 7823–37.

211 Dahl A, Thompson M, An U, et al (2024) Phenotype integration improves power and preserves specificity in 
biobank-based genetic studies of major depressive disorder Nature Genetics 55(12): 2082–93.

212 Elbaum B, Perry LK, and Messinger DS (2024) Investigating children’s interactions in preschool classrooms: an 
overview of research using automated sensing technologies Early Childhood Research Quarterly 66: 147–56.

213 Perez-Pozuelo I, Spathis D, Gifford-Moore J, Morley J, and Cowls J (2021) Digital phenotyping and sensitive health 
data: implications for data governance Journal of the American Medical Informatics Association 28(9): 2002–8.

https://www.genlang.org/
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A related challenge is that environmental measures available in large genomic cohorts 
and biobank resources are often inadequate, typically relying on demographic data 
and self-reported aspects of the home environment.214 This lack of precision and 
breadth partly reflects the methodological and resource challenges of capturing the 
full range of social and environmental influences throughout development, in 
sufficient detail and at scale.215 Experts we consulted noted inconsistent measurement 
of school environments, especially in relation to what happens in classrooms, the 
support and learning resources available across schools, and the type of instruction 
provided. It is unclear how this school-level data gap might be solved without linking 
to existing high-quality data or the collection of new prospective studies. 

Ultimately, a more integrated evaluation of home, school, and wider environments 
and experiences across the lifespan will require collaboration across research 
disciplines, particularly when incorporating PGIs that can be challenging to causally 
interpret. This underscores the importance of multidisciplinary collaboration that 
draws on expertise from ethicists and the social, epidemiological, genomic and 
developmental sciences.216 

5.2 PGIs as a tool for individual-level prediction 

There is ongoing debate in the scientific community about the translational potential 
of PGIs in educational practice and policy.217 Some argue that genomic prediction 
could help to guide classroom practices; to better meet students’ specific needs and 
improve their educational experiences and outcomes.218 Typically, this could involve 
identifying students who are more vulnerable to falling behind academically, enabling 
early targeted intervention to support learning.

However, while some PGIs relevant to education are powerful for group-level 
predictions and relationships, they are poor for individual-level predictions. The PGIs 
of high academic achievers are, on average, higher than those of other students, but 
the PGI distributions of these two groups heavily overlap. PGIs in isolation are thus 
poor at predicting where a specific student will fall.

One concern is distinguishing between ‘identifying students at risk’ and ‘prediction’. 
Prediction implies a degree of certainty about a student’s likelihood of a particular 

214 Von Stumm S, Kandaswamy R, and Maxwell J (2023) Gene–environment interplay in early life cognitive development, 
Intelligence 98: 101748.

215 Von Stumm S and d’Apice K (2022) From genome-wide to environment-wide: capturing the environome Perspectives 
in Psychological Science 17(1): 30–40.

216 Pingault JB, Allegrini AG, Odigie T, et al (2022) Research review: how to interpret associations between polygenic 
scores, environmental risks, and phenotypes Journal of Child Psychology and Psychiatry 63(10): 1125–39.

217 Meyer MN, Appelbaum PS, Benjamin DJ, et al (2023) Wrestling with social and behavioral genomics: risks, potential 
benefits, and ethical responsibility Hastings Centre Report 53(1): S2–4.

218 Plomin R and von Stumm S (2018) The new genetics of intelligence Nature Reviews Genetics 19(3): 148–59; Plomin 
R (2018) Blueprint: how DNA makes us who we are (Cambridge, MA: The MIT Press).
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outcome, whereas identifying risk suggests more that further investigation or 
support may be required. These are similar but distinct concepts, and in practice 
there is a risk of conflation. This could result in PGIs being misused to make 
assumptions about a student’s potential or to categorise students incorrectly. While 
this does not mean that PGIs should be dismissed entirely, it highlights a real 
conundrum that will need to be carefully navigated in real-world situations.

It is useful to consider how other indicators of student achievement have been used 
in schools, often with unintended consequences. For example, contextualised 
value-added (CVA) models for assessing school performance were discontinued due 
to concerns that they embedded lower expectations for students with specific 
contextual variables, such as eligibility for free school meals.219 This led to a shift 
towards using prior attainment as the basis for targeting support, rather than 
focusing on background characteristics that predict low achievement on average. 
Similarly, it is possible to envisage scenarios where PGIs might be misused in real-
world settings to limit achievement expectations, or to incentivise schools to 
deprioritise students with lower PGIs.

As already raised, PGIs do not predict equally well across diverse populations, posing 
the risk of entrenching or exacerbating educational and social inequalities. Moreover, 
the EduYears PGI captures environmental and social influences raising ethical 
concerns about making decisions based on not only a student’s genetic make-up, 
but also other factors such as social advantage. Within-family GWAS-derived PGIs, 
which control for some of these confounders, may reduce this concern, but the PGI 
will explain less variance, making it less accurate for individual-level prediction.220

A key question is whether PGIs offer meaningful benefits beyond non-genomic 
predictors, such as prior achievement or familial factors, aside from the fact that they 
are, in principle, available prior to the start of schooling and are specific to siblings 
within the same family. While the predictive power of PGIs may improve in the near 
future, the PGI for years in education is already approaching its theoretical maximum 
based on heritability estimates.221 Additionally, due to pleiotropy, a PGI for one 
phenotype may predict a second. As a result, PGIs lack specificity, and calculating a 
student’s PGI for a particular phenotype can also reveal information about other 
genetic vulnerabilities or strengths. It may also enable secondary inferences to be 
made about family members, such as relatedness or other sensitive characteristics. 

If the goal of individual prediction is to inform intervention, PGIs face another 
limitation: they do not map neatly to specific biological processes or pathways, nor 
do they provide insights into causal mechanisms. This means that it may not always 

219 Dearden L and Vignoles A (2011) Schools, markets and league tables Fiscal Studies 32: 179–86. 

220 Okbay A, Wu Y, Wang N, et al (2022) Polygenic prediction of educational attainment within and between families 
from genome-wide association analyses in 3 million individuals Nature Genetics 54: 437–49.

221 Ibid.
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be immediately clear how and when to act in order to mitigate potential difficulties 
effectively. Related to this, the education sector may lack the tools and resources 
needed to support PGI-based intervention or support, such as the personalisation of 
educational provision.

Additional ethical concerns include the risk of embedding systemic – or creating  
new forms of – discrimination and stigmatisation, including perhaps for phenotypes 
that are not currently considered protected characteristics under UK equalities 
legislation. Inaccurate inferences based on PGIs may also be difficult for individuals 
to contest due to their technical complexity, and the probabilistic nature of 
prediction can be difficult to communicate effectively.222 Further, receiving PGI 
information could negatively affect students’ wellbeing and parents’ and teachers’ 
perceptions and expectations of students, with evidence showing that teacher 
perceptions can influence students’ educational trajectories.223 Concerns were also 
raised by the experts we consulted that the introduction of PGIs into practice and 
policy may detract from other efforts to improve education and address social and 
economic inequities. 

5.3 Wider societal backdrop

These debates are unfolding in a context where much of the data needed to construct 
PGIs for educationally relevant phenotypes are publicly available, and the science 
continues at pace. As a result, there is growing awareness of the potential ethical and 
policy implications of PGIs being applied outside of research settings. For instance, 
corporations, such as those selling insurance and financial services, may see 
economic value in PGIs,224 and a growing body of literature has highlighted the ethical 
implications of marketing and selling PGI reports – predicting both medical and 
non-medical phenotypes – directly to adults,225 or to in vitro fertilisation (IVF) patients 
to inform embryo transfer decisions (known as PGT-P).226

222 Wallingford CK, Kovilpillai H, Jacobs C, et al (2023) Models of communication for polygenic scores and associated  
psychosocial and behavioral effects on recipients: a systematic review Genetic Medicine 25(1): 1–11.

223 Koivuhovi S, Jung A, Kilpi-Jakonen E, Little TD, and Vainikainen MP (2025) Influence of track placement and 
teachers’ perceptions of children’s academic schoolwork skills on the development of children’s motivational 
self-beliefs and achievement Teaching and Teacher Education 153: 104847.

224 Meyer MN, Papageorge NW, Parens E, et al (2024) Potential corporate uses of polygenic indexes: starting a 
conversation about the associated ethics and policy issues American Journal of Human Genetics 111(5): 833–40.

225 Onstwedder SM, Jansen ME, Cornel MC, and Rigter T (2024) Policy guidance for direct-to-consumer genetic 
testing services: framework development study Journal of Medical Internet Research 26: e47389; Martins MF, 
Murry LT, Telford L, et al (2022) Direct-to-consumer genetic testing: an updated systematic review of healthcare 
professionals’ knowledge and views, and ethical and legal concerns European Journal of Human Genetics 30: 
1331–43.

226 Grebe TA, Khushf G, Greally JM, et al (2024) Clinical utility of polygenic risk scores for embryo selection: a points to 
consider statement of the American College of Medical Genetics and Genomics (ACMG) Genetics in Medicine 
26(4): 101052.
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PGT-P is illegal in the UK under the Human Fertilisation and Embryology Act 2008 
but is permissible in the USA. Several private US companies offer PGT-P as a service, 
including for intelligence.227 Despite evidence that using PGT-P to screen IVF embryos 
for years in education or intelligence would have a limited impact,228 in the US there is 
a degree of interest in, and moral acceptance of, doing so.229

In the UK, PGI reports are available to individuals outside of healthcare or educational 
settings via direct-to-consumer (DTC) companies.230 While we are not aware of 
UK-based DTCs offering PGI reports for psychiatric disorders, years in education or 
intelligence, European companies already market PGI reports for social and 
behavioural phenotypes (e.g. Gene PlazaGene Plaza) and US company NucleusNucleus recently 
launched genetic tests for intelligence and psychiatric conditions. 

The growing DTC market makes it plausible that practical considerations such as low 
cost and accessibility may drive societal adoption of PGIs, irrespective of academic, 
scientific and ethical concerns. Will parents ‘vote with their wallets’ by obtaining PGI 
reports for their children? A PGI report indicating a higher likelihood of social, 
emotional or behavioural difficulties might prompt parents to approach their child’s 
school to request assistance and support231, or to appeal local authority SEND 
decisions. In such scenarios, how should the state respond, and what criteria should 
guide its actions? Schools are already struggling to supportstruggling to support children with specific 
learning needs. Without additional funding, they may lack the capacity to provide 
support even if evidence existed for effective interventions. 

5.4 Next steps: exploring the ethical unknowns

This report has touched on some of the ethical issues arising in both educational 
genomics research itself and its potential translation. However, much remains 
underexplored and requires further deliberation on the range of ethical challenges 
arising, and their potential impact on research, practice and policy contexts.

A number of the key ethical challenges arising from the research itself – such as 
those around insufficient diversity in datasets – apply across health and educational 
genomics research alike, and have been the subject of attention in academic literature. 
Alongside greater interdisciplinarity in ethical discourse, and consideration of the 

227 Turley P, Meyer MN, Wang N, et al (2021) Problems with using polygenic scores to select embryos New England 
Journal of Medicine 385(1): 78–86.

228 Karavani E, Zuk O, Zeevi D, et al (2019) Screening human embryos for polygenic traits has limited utility Cell 179(6): 
1424–35.

229 Meyer MN, Tan T, Benjamin DJ, Laibson D, and Turley P (2023) Public views on polygenic screening of embryos 
Science 379(6632): 541–3.

230 Park JK and Lu CY (2023) Polygenic scores in the direct-to-consumer setting: challenges and opportunities for a 
new era in consumer genetic testing Journal of Personal Medicine 13(4): 573. 

231 Martschenko D, Trejo S, and Domingue BW (2019) Genetics and education: recent developments in the context of 
an ugly history and an uncertain future AERA Open 5(1).
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ethical issues raised in addressing knowledge gaps and methodological limitations, 
further focus might be given to identifying and exploring current and future challenges 
unique to educational genomics research; what their impact might be on both research 
integrity and translation potential; and how they might be effectively addressed.

Issues arising from the potential translation of research findings into policy and 
practice have not yet been the subject of detailed ethical debate, and this represents 
a significant gap in extant knowledge. There has been little exploration of the ethical 
issues arising from translation of PGIs at a classroom level and, accordingly, whether 
they should be translated into education at all. A greater understanding of these 
areas and their implications for policy would likely be of benefit not only to education 
professionals and policymakers, but also to the scientific community in developing 
the scope of future genomic research.
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A DNA molecule is made up of sugar residues, phosphate groups and bases. A 
base-sugar-phosphate group is called a nucleotide. DNA is comprised of two chains, 
each made of nucleotides. The two chains form a double helix held together by weak 
hydrogen bonds between opposed bases, with ‘A’ always pairing with ‘T’, and ‘C’ 
pairing with ‘G’. This is called the ‘Watson-Crick’ base pairing rule. See Figure 6. The 
Watson-Crick base pairing is key to the DNA copying mechanism needed to duplicate 
DNA prior to cell division (mitosis). 

To make a distinction between the two strands of DNA, one strand is called the 
‘forward’ strand and the other the reverse strand. This means that when talking 
about DNA sequence – the order of As, Gs, Cs and Ts – only one strand is referred  
to, typically the forward strand.

Figure 6: DNA double helix.

Image courtesy of the National Human Genome Research Institute Home | NHGRINational Human Genome Research Institute Home | NHGRI

Annex 1 The structure  
of DNA
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The human body is made up of gamete cells (sperm or egg cells) and somatic cells 
(all other cells of the body). Each somatic cell is diploid, which means it contains two 
copies of the genome – one inherited from each parent. The human genome 
sequence is approximately 3.1 billion nucleotides in length and organised into 23 
pairs of chromosomes. These include 22 pairs of autosomes, numbered from largest 
(chromosome 1) to smallest (chromosome 22) based on their size, and one pair of sex 
chromosomes (XX for females and XY for males). One chromosome in each pair is 
inherited from each parent. 

Gamete cells are haploid, which means they contain only one copy of the genome; 22 
homologous chromosomes and a Y or a X chromosome. Gamete cells are formed by 
meiosis. During meiosis, the paired maternal and paternal chromosomes are shuffled 
(a process called recombination) resulting in a gamete that is a unique mixture of the 
parental genomes. 
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Genetic variation – changes in the sequence of DNA – can arise via copying errors 
during cell division, exposure to environmental mutagens (such as ionising radiation) 
and viral infection. This variation can occur in gamete (sperm and egg) cells or 
somatic (all other) cells, but only variation that arises in gametes can be passed on to 
offspring (i.e. inherited). 

Evolutionary and demographic factors such as genetic drift, selection, migration and 
population size will influence the frequency of genetic variants in a population. 
Generally, genetic variants that are common in a population tend to be older (i.e. 
mutations that arose many generations ago) and are often neutral or beneficial to an 
individual’s health and functioning. In contrast, rare variants are more likely to have 
deleterious effects on health, and tend to have arisen more recently, and may even 
be specific to a family or an individual. 

Genetic variation ranges in scale. It can encompass large structural alterations, such 
as changes in the number or arrangement of chromosomes, or the number of copies 
of a segment of DNA (called copy number variation, or CNVscalled copy number variation, or CNVs). The most frequent 
form of genetic variation in the human genome is a single base change where one 
base (A, G, C or T) is replaced by another. These are known as single nucleotide single nucleotide 
polymorphisms, or SNPspolymorphisms, or SNPs (pronounced ‘snips’) for short. 

The term allele is used to refer to the multiple versions of a DNA sequence that exist 
for a genetic variant. In the case of SNPs, it simply refers to the different bases (A, G, 
C, or T) that can occur at that specific site. The combination of alleles for a genetic 
variant is called a genotype. For example, at a SNP where the alleles are C or T, an 
individual might have the genotype TC, TT, or CC. See Figure 7Figure 7. 

To date, genomic research on complex phenotypes that relate to education has 
largely focused on common genetic variation, such as SNPs. This is because they are 
easier than rare variants to detect and collectively account for a big proportion of 
genetic differences between people; a typical genome differs from the reference 
human genome sequence at roughly 3.5 million SNPs.232 Because each SNP usually 
has only two possible alleles, upwards of 600,000 SNPs can be genotyped in large 
numbers of individuals using SNP microarray technology. This technology is 

232 1000 Genomes Project Consortium (2015) A global reference for human genetic variation Nature 1;526(7571):68-74. 

Annex 2 Genetic variation 
and genotyping methods
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cheaper and faster than DNA sequencing-based approaches to genotyping for the 
whole genome (whole genome sequencing; WGS) or the protein coding regions of 
the genome (whole exome sequencing; WES). 

Due to their low cost and speed, SNP microarrays are the primary technology used 
to perform genome-wide association studies (GWAS). 

Figure 7: A single nucleotide polymorphism. Note the DNA sequence from one 
strand of the DNA helix only is shown, for both the maternally and paternally 
inherited genomes.
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Heritability is a numerical estimate of the degree to which variation in a phenotype 
(such as height or reading ability) in a population is due to genetic variation between 
individuals in that population. 

Historically, heritability of a phenotype was estimated using twin studies that exploit 
the fact that monozygotic (identical) and dizygotic (non-identical) twins share the 
same in utero and familial experiences, but differ in genetic similarity. Monozygotic 
twins develop from a single fertilised egg splitting into two embryos and therefore 
share the same genetic information, while dizygotic twins develop from two 
separately fertilised eggs and are no more genetically alike than full siblings. If pre- 
and post-natal environments are similar for both monozygotic and dizygotic twins 
(the equal environments assumption),233 heritability can be estimated by the extent 
to which monozygotic twins are more similar for a phenotype than dizygotic twins by 
virtue of their higher genetic similarity.

More recently, analytical methods have been developed to estimate heritability using 
genotype data from thousands of individuals.234 These methods – including Linkage 
Disequilibrium Score Regression (LDSC)235 and Genome Relatedness Restricted 
Maximum Likelihood (GREML)236 – measure the degree to which the genotyped 
common genetic variants that are spread throughout the genome contribute to a 
phenotype. Estimates from these approaches are called SNP-based heritability. 
LDSC and GCTA methods can also be used to estimate genetic correlations across 
phenotypes using genotype or GWAS summary data. 

Both twin and SNP-based studies have shown that years spent in education and 
educational achievement are heritable. Genomic variation also contributes to many 
other phenotypes that impact education, such as general cognitive function 

233 Richardson K and Norgate S (2005) The equal environments assumption of classical twin studies may not hold 
British Journal of Educational Psychology 75:339–50.

234 Barry CJS, Walker VM, Cheesman R, et al (2023) How to estimate heritability: a guide for genetic epidemiologists 
International Journal of Epidemiology 52(2):624–32.

235 Bulik-Sullivan B, Loh PR, Finucane H, et al (2015) LD Score regression distinguishes confounding from polygenicity 
in genome-wide association studies Nature Genetics 47:291–95.

236 Yang J, Benyamin B, McEvoy BP, et al (2010) Common SNPs explain a large proportion of the heritability for human 
height Nature Genetics 42(7):565-9.
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(intelligence), psychiatric conditions such as depression and anxiety, 
neurodevelopmental conditions such as autism and ADHD, and specific learning 
difficulties such as dyslexia.237

Heritability is a statistic that is often misunderstood.238 Here are some common 
misinterpretations and clarifications:

Misconception 1: Heritability estimates for a phenotype are static

The relative contribution of genetic and environmental factors to a phenotype are 
context-specific. As a result, twin and SNP-based heritability estimates can fluctuate 
depending on population-specific cultural, social and demographic factors, as well as 
how the phenotype is defined and measured, and the age at which it is assessed. 

For example, the heritability of educational attainment differs across birth cohorts 
and countries239 and can even change within the same population over time as 
environmental factors – such as educational policies and social context – change.240 
Generally, heritability of educational phenotypes tends to increase when equality of 
learning opportunities and environments improve. For instance, if every child had 
equally optimal education-relevant environments, genetic differences would become 
the primary source of variability in educational outcomes, and so heritability 
estimates would be very high. In contrast, in a country with limited educational 
resources or widespread poverty, environmental factors would be the limiting factor 
and heritability estimates would be low. Similarly, in countries with highly variable 
schools and home environments, these variable conditions would mainly account for 
differences in outcomes and result in low heritability estimates. 

Heritability can also change across the lifespan. For instance, the twin-based 
heritability of general cognitive ability increases from ~40% in childhood to 66% in 
young adulthood.241 This is thought to be due to gene–environment correlation, 
whereby individuals seek out and create environments that align with their genetic 
propensities as they grow up. 

237 Polderman T, Benyamin B, de Leeuw C, et al (2015) Meta-analysis of the heritability of human phenotypes based on 
fifty years of twin studies Nature Genetics 47:702–09.

238 Visscher P, Hill W, Wray N, et al (2008) Heritability in the genomics era – concepts and misconceptions Nature 
Reviews Genetics 9:255–66.

239 Silventoine K, Jelenkovic A, Sund R, et al (2020) Genetic and environmental variation in educational attainment: an 
individual-based analysis of 28 twin cohorts Scientific Reports 10:12681.

240 Rimfeld K, Krapohl E, Trzaskowski M, et al (2018) Genetic influence on social outcomes during and after the Soviet 
era in Estonia Nature Human Behaviour 2(4):269-75.

241 Haworth CM, Wright MJ, Luciano M, et al (2010) The heritability of general cognitive ability increases linearly from 
childhood to young adulthood Molecular Psychiatry 15(11):1112-20. 
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Misconception 2: Heritability tells you something about the 
sources of between-group differences

High heritability does not mean that differences in the average phenotype between 
two populations are due to genetic factors. Heritability measures variation within a 
group and provides no information about the size or sources of differences in 
phenotype between groups. 

Misconception 3: Heritability provides information on the size of 
genomic effect for an individual

Heritability can sometimes be confused with genetic inheritance. Genetic 
inheritance is the passing of genes from parent to child. Heritability is what makes 
people in a population phenotypically different from each other – it does not explain 
what proportion of an individual’s phenotype is inherited. For example, across the 
lifespan, the heritability of intelligence is ~ 50%.6 That is, genetic differences can 
account for, on average, 50% of the differences in intelligence that can be measured 
between individuals. It does not mean that inherited genetic variation accounts for 
50% of a given person’s intelligence. 

Misconception 4: Finding high heritability for a phenotype means it 
is immutable

High heritability means that a high proportion of observed phenotypic variation in the 
population examined can be attributed to genetic variation. It does not mean that the 
phenotype is fixed or cannot change (a form of genetic determinism). 

An individual’s DNA sequence may predispose them to certain phenotypes, but that 
predisposition does not fully determine who they are or how they will develop, 
because the environment can change or be manipulated to modify the phenotype. 
This is nicely illustrated with height, which has a heritability of ~80%.242 Despite this 
very high heritability, there has been a well-documented increase in average height in 
many populations, likely due to changes in environmental conditions such as better 
nutrition and healthcare. Similarly, neuroscientific research has demonstrated that 
education (itself a form of population-level environmental manipulation) can increase 
cognitive abilities.243 By extension, even if cognitive ability was 100% heritable, it is 
plausible that an environmental intervention could improve everyone’s performance 
on a cognitive test but while everyone may improve with the intervention, the 
remaining differences between people would be for genetic reasons. 

242 Yengo L, Vedantam S, Marouli E, et al (2022) A saturated map of common genetic variants associated with human 
height Nature 610:704–12.

243 Ritchie SJ, Tucker-Drob EM (2018) How Much Does Education Improve Intelligence? A Meta-Analysis 
Psychological Science 29(8):1358-69. 
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A genome-wide association study (GWAS) requires the collection of genotype and 
phenotype information for a large group of individuals. Typically, DNA is collected 
from research participants via saliva or blood samples, and the DNA is genotyped 
using SNP microarrays or DNA sequencing methods such as whole genome 
sequencing or whole exome sequencing (see Annex 2Annex 2). SNP microarrays are the 
most widely used technology as they can genotype hundreds of thousands of SNPs 
spread throughout the genome quickly and cost-effectively. 

SNP genotype data is accessible to researchers for some Biobanks, and for many 
large cohorts.

In a GWAS research participants are genotyped, and the resulting data undergo 
sample and variant quality control steps using established software tools and 
pipelines.244 After this, genotypes are ‘phased’ which allows for the alleles of non-
genotyped variants to be statistically inferred using reference populations. 
Genetically similar individuals are assigned to a genetic ancestry group, and 
relatedness of participants considered. 

Once these steps are complete, the alleles of each variant (typically a SNP) are 
tested for association with the phenotype of interest using regression-based 
statistical methods. These methods typically assume additive effects of alleles on a 
phenotype. Each statistical test is performed on upwards of 600,000 genetic 
variants across the genome, resulting in many statistical tests. To account for this, a 
stringent p-value threshold of 5x10-8 is used to indicate statistical significance. 
Results are replicated in independent samples to ensure they are reliable. 

Since the physical location of each genetic variant is known, a significant association 
points to a genomic region (or locus) that influences the phenotype. The results are 
visualised as a Manhattan plot, where tall ‘skyscrapers’ of signal indicate regions of 
the genome with evidence of genetic associations. See Figure 8Figure 8. 

244 Marees AT, de Kluiver H, Stringer S, et al (2018) A tutorial on conducting genome-wide association studies: Quality 
control and statistical analysis International Journal of Methods in Psychiatric Research 27(2):e1608.

Annex 4 Overview of a 
genome-wide association 
study (GWAS)
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Further in silico analyses are required to interpret these signals in a biological 
context, often by integrating epigenetic and transcriptomic data from other sources. 
Experimental approaches may also be used to test specific hypotheses.245

Figure 8: Manhattan plot of the most recent GWAS for years spent in education  
of ~3 million individuals using an additive (green) and dominant (red) statistical 
model. The x axis is the chromosomal position, and the y axis is the significance 
on a −log10 scale. The dashed line marks the threshold for genome-wide 
significance (P = 5 × 10−8). 

This image is reproduced from Okbay et al (2022) under a Creative Commons Attribution 4.0 International 
License. To view the license, visit http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/. No changes were made 
to the original material. SourceSource.

245 Uffelmann E, Huang QQ, Munung NS, et al (2021) Genome-wide association studies Nature Reviews Methods 
Primers 1:59.

http://creativecommons.org/licenses/by/4.0/
https://www.nature.com/articles/s41588-022-01016-z/figures/1
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Polygenic indices (PGIs) are calculated as a weighted sum of alleles in a set of SNPs 
associated with a phenotype. The weights correspond to the direction (positive or 
negative) and strength (‘effect size’) of the association with the phenotype. Figure 9 
illustrates how a PGI is calculated for four individuals using five SNPs. In practice, 
PGIs typically include thousands of SNPs. 

Figure 9: A simplified example of how a PGI comprised of five SNPs is calculated 
for a given phenotype, for four individuals. PCIs are normally distributed in a 
population, meaning that most people will have a PGI close to the average, with 
only a small number of people having very high or very low PGI.

Annex 5 Polygenic  
indices and how they  
are calculated
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The creation of a PGI requires two datasets: (1) GWAS summary data for the 
phenotype of interest, which includes p-values and effect size for each SNP tested; 
and (2) genotype data for a set of individuals. 

Various methods exist for calculating PGIs, differing in how SNPs are selected and 
how allele weights are calculated.246 One commonly used approach is to rank SNPs 
in the GWAS data based on their association with the phenotype and select a subset 
that meets a certain threshold (e.g., SNPs with a p-value < 0.05). Once the SNPs have 
been selected, they are matched to the individual genotype dataset, ensuring both 
datasets contain the same set of SNPs. 

For each individual, a genotype value is calculated for each SNP by counting the 
number of phenotype-associated alleles they carry (0, 1, or 2) and multiplying this 
value by the allele weight. For example, if allele ‘A’ for a given SNP increases the 
phenotype value by 1.5, an individual with two copies of the A allele would receive a 
value of 3 (2 × 1.5), while an individual with no copies of the A allele would get a value 
of 0 (0 × 1.5). A PGI for each individual is calculated as the sum of these genotype 
values across all selected SNPs. In Figure 9Figure 9, the values for five SNPs are summed, 
resulting in a PGI of 2.0 for individual 1.

A key question is how many SNPs to include in a PGI. While PGIs can be created 
using only SNPs that are genome-wide associated with a phenotype (i.e. p value  
< 5x10-8), it is often the case that all SNPs examined in the GWAS are included – even 
though a high proportion will be given near-zero weights as they are not statistically 
associated with the phenotype of interest. 

PGIs can provide a very rough estimate of an individual’s genomic propensity for a 
phenotype relative to others in the same population, and can be used as a numerical 
variable in statistical analyses. It is important to note that PGIs do not capture all 
genomic influences on a phenotype, and changes in environmental conditions may 
alter PGI influences.

246 Ni G, Zeng J, Revez JA, et al (2021) A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders 
Applied Across Multiple Cohorts Biological Psychiatry 1;90(9):611-20.
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Adoption studies: In adoption studies, two types of pairs are examined: (1) individuals 
who are genetically related but do not share a common family environment (i.e. adoptees 
and their biological parents), and (2) individuals who share a family environment but 
who are not related (i.e. adoptees and their adoptive parents). By comparing how 
similar adoptees are to their biological versus their adoptive parents, researchers 
can separate out the relative importance of genetic and environmental influences on 
a specific phenotype. See also twin studies and molecular genetic studies.

Allele: An alternate version of DNA sequence (single base or series of bases) at a 
specific location in the genome. Where such DNA variation exists, an individual 
inherits two alleles – one from each parent – which may be similar or different. 

Assortative mating: This occurs when individuals with similar phenotype values are 
more likely to pair and reproduce with each other than would be expected by chance. 
Assortative mating is found for educational attainment, intelligence and personality, 
with couples correlating positively for these phenotypes. It can lead to increased 
genetic similarity within couples, which can complicate the interpretation of genetic 
research findings. For example, if people with high levels of education tend to marry 
thin people, then the genetic variants influencing higher levels of attainment and 
lower body weight will become correlated in their offspring. As a result, a GWAS of 
attainment in the offspring may pick up associations for the (non-causal) variants for 
body weight, and vice versa.247

Candidate gene: A gene selected for study based on a priori knowledge of the  
gene’s function or reported association with a phenotype. In general, candidate gene 
studies have been poorly replicated and have been superseded by genome-wide 
association studies.

247 Domingue BW, Fletcher J, Conley D, and Boardman JD (2014) Genetic and educational assortative mating among 
US adults Proceedings in the National Academy of Sciences U.S.A. 111(22): 7996–8000.

Glossary of key scientific 
terms used in the report
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Chromosome: A single long molecule of DNA. In diploid cells (all cells of the body other 
than sperm and egg cells) the human genome is organised into 46 chromosomes:  
23 pairs of autosomes (1–22) and one pair of sex chromosomes (typically XX = female; 
XY = male), with one member of each chromosomal pair inherited from each parent. 
Sperm and egg cells are haploid, containing only one copy of each chromosomal pair  
(23 chromosomes). 

Complex (multifactorial) phenotypes: These arise as a result of a multitude of both 
genetic and environmental influences, and their interplay across the life course. This 
means that while the DNA sequence we inherit might influence how we think, feel and 
act, DNA alone does not determine who we are and how we develop. 

Confounding: A confounder is a third variable, often unmeasured, that influences 
both the outcome and the risk factor, generating a spurious association between the 
two. This can lead to incorrect conclusions about cause and effect. Gene–environment 
correlation can be a source of confounding in observational research. For example, 
reading ability is genetically influenced, but offspring can both receive the genetic 
variants associated with reading ability and be influenced by a home reading 
environment. This is a form of passive gene–environment correlation, and it can confound 
observational associations between parental and offspring reading characteristics. 
Active and evocative gene–environment correlation can also create confounding if 
the environment that an individual experiences is influenced by their genotype. 

DNA (deoxyribonucleic acid): The molecule that contains the genetic instructions 
for all living things. The DNA molecule is composed of two strands that coil around 
each other to form a double helix. Each strand contains a sugar-phosphate 
backbone, attached to which is one of four bases: adenine (A), guanine (G), thymine 
(T) or cytosine (C). 

DNA sequence: This refers to the sequence of DNA bases (A, T, C, G) in the human 
genome. The order of bases is important because it encodes the biological information 
that cells use to develop and function.

DNA sequencing: The laboratory-based process of determining the exact order of 
nucleotides (or bases) in the DNA sequence. The sequence of bases forms instructions 
for an organism’s cells to follow, such as how to create the proteins it needs to develop 
and function. DNA sequence can be determined for the whole genome (whole-genome 
sequencing; WGS) or just for the protein-coding regions (whole-exome sequencing; 
WES) of an individual.

Effect size: A statistic that quantifies the strength of a relationship between  
two measures. 

Environment: In genomic research, ‘environment’ is taken to mean anything other 
than DNA sequence. Environmental factors examined in genetically informed 
educational research include family-, school- and neighbourhood-level factors. 
Environments that make two individuals in a family (such as siblings) similar are 
called ‘shared’, while those that make them dissimilar are called ‘non-shared’. 
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Family-based GWAS: Family-based association tests that make use of first-degree 
relatives (typically, trio data comprised of both parents and a child). Family-based 
GWASs require larger sample sizes than GWASs of unrelated individuals to achieve 
the same statistical power but can help mitigate the influence of confounding factors. 

Gene: Genes are arranged along chromosomes and consist of a sequence of DNA that 
is transcribed to produce a protein or other functional product. These products carry 
out biological functions inside or outside the cell or regulate the transcription of other 
genes. There are approximately 20,000 protein-encoding genes in the human genome. 

Gene–environment correlation (rGE): Many environmental factors that relate to 
child development and functioning, such as parental discipline and life events, are 
heritable.248 This indicates the presence of gene–environment correlation, where 
certain environments are more prevalent for individuals with certain genotypes, 
creating a link between their DNA and their experiences.249 Gene–environment 
correlation can arise through three proposed mechanisms, passive, evocative and 
active, the first two of which are referred to in this report:

Active rGE: This occurs when children select their environments based on their 
genotype. For example, a child with a high PGI for attainment may join a maths 
club or hang out with the more academic kids in school.

Evocative rGE: This occurs when a child’s genotype evokes specific responses 
from others, creating a correlation between that genotype and the environment. 
For example, a child with a high PGI for educational attainment (which may 
manifest in certain behaviours and cognitive traits) may evoke a specific response 
from teachers and parents, such as the creation of further learning opportunities. 

Passive rGE: This can result from children inheriting both phenotype-associated 
genetic variants and phenotype-environments from their parents. For example, 
children of parents genetically predisposed to stay in education longer may 
themselves have higher educational attainment due to the direct effects on their 
own education of the variants associated with such attainment that they inherit.  
If these parents also create rearing environments correlated with their genetic 
propensity to education, the children inherit these educationally rich environments 
as well – such as more books in the home, extra tuition, or educational trips  
and experiences. 

248 Kendler KS and Baker JH (2007) Genetic influences on measures of the environment: a systematic review 
Psychological Medicine 37(5): 615–26.

249 Plomin R (2014) Genotype–environment correlation in the era of DNA Behaviour Genetics 44(6): 629–38. 
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Gene–environment interaction (GxE): This refers to situations where vulnerability to 
an environmental exposure varies depending on the individual’s genotype and, 
conversely, the effect of a genotype on a phenotype is modified by environmental 
exposures. When GxE interaction is present, a specific environmental change 
influences the phenotype of interest in different ways depending on the genotype.

Genetic ancestry: Ancestry is directly inferred from genomic variation data and not 
self-defined. It is used in genomics research to group genomes by how similar they 
are in patterns of genomic variation. Individuals are assigned to a genetic ancestry 
group as part of a GWAS analysis to avoid biased results owing to population 
stratification. The ancestry groupings are often given continental-level descriptors 
such as ‘European’, ‘Asian’ or ‘African’. However, this approach overlooks the fact that 
ancestry is a continuum and not well captured by these population-level descriptors. 
Further, use of population-level descriptors that are linked to biology and can overlap 
with, or be conflated with, race and ethnicity can perpetuate harmful thinking and is 
both ethically and scientifically fraught. In response to these issues, the National 
Academies of Sciences, Engineering and Medicine (NASEM) recently released a 
report detailing a set of 13 recommendations on the use of population descriptors in 
genetics and genomics research.250 

Genetic correlation: This measures the similarity (or correlation) between the genetic 
influences on two phenotypes. A genetic correlation of 0 indicates that genetic 
influences on one phenotype are independent of the other; a correlation of 1 indicates 
that genetic influences on both phenotypes are entirely shared. 

Genetic nurture (also called dynastic effects): The genetic influences of family 
members on one another that operate via environmental pathways and processes. 

Genetic variation (also called polymorphism): A position in the human DNA sequence 
at which there are at least two versions – or alleles – in the population. DNA variation 
comes in many forms: it may be a difference in a single base position (such as a single 
nucleotide polymorphism; SNP), a section of DNA that is deleted or repeated (such 
as copy number variations; CNVs), or the loss or duplication of entire chromosomes 
(such as trisomy 21). DNA variants are detectable at different frequencies in a 
population: some are common (more than 5% of individuals in the population have 
the alternate allele) while some are rare or ultra-rare (present in fewer than 0.1% of 
individuals). Some DNA variants will negatively impact biological function and lead to 
diagnosable conditions, while others have no obvious biological effect.

Genetics: The study of genes and how they function, as well as how they are inherited.

Genome: The complete set of DNA instructions present in a cell.

250 National Academies of Sciences, Engineering, and Medicine (2023) Using population descriptors in genetics and 
genomics research: a new framework for an evolving field (Washington, DC: National Academies Press). 
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Genome-wide association study (GWAS): The main research method used to 
identify genetic variants associated with heritable phenotypes. It involves comparing 
DNA variation data from a very large number of individuals that differ for the phenotype 
of interest (e.g. individuals with varying academic performance) to identify alleles 
that correlate with phenotype variation. GWASs can use a case-control study design 
when the phenotype of interest is dichotomous (e.g. cases with ADHD and controls 
without ADHD), or a quantitative approach when the phenotype is quantitative (e.g. 
intelligence). GWASs identify not necessarily the causal allele but rather a region of 
the genome that is correlated with the phenotype. These regions are followed up 
through further experiments to understand how the variation impacts biology. 

Genomics: The study of the genomes of individuals and organisms that examines 
both the coding and non-coding regions. This term is also used when talking about 
related laboratory and bioinformatic techniques. The study of genomics in humans 
focuses on areas of the genome associated with health and disease. 

Genotype: An individual’s combination of alleles (or DNA variants). If an individual 
has two copies of the same allele for a DNA variant, they are said to be homozygous. 
If they have different alleles for the DNA variant, they are heterozygous.

GWAS summary data: The results of a GWAS, including a list of all tested genetic 
variants and their effect size. Summary data for thousands of GWASs have been 
made publicly available to download and query. The minimum required in a GWAS 
summary data file is a list of SNP IDs, SNP locations and genomic build, alleles, 
strand, effect size and standard error, p-value, test statistic, minor allele frequency, 
and sample size.

Heritability: This is a numerical value that estimates the degree to which variation in 
a phenotype (such as height or reading ability) in a population is due to genetic 
variation between individuals in that population. The more heritable a phenotype is, 
the more alike individuals who are also genetically similar will be for that phenotype. 
When heritability is estimated from twin studies, it is called ‘twin heritability’, and the 
remaining variation is assumed to be of environmental origin and classified as shared 
or non-shared. Heritability estimates from twin studies include all sources of genetic 
variation. When heritability is estimated using genetic variation data it is called ‘SNP 
heritability’ and is the variance explained by the additive effects of measured 
common DNA variants in a population. Heritability estimates are useful for guiding 
genomic research, for example to justify the search for more genetic variants using 
GWAS strategies, and it can provide limits on the performance of polygenic ‘indices’. 

Human genome: The full DNA sequence for an individual, consisting of 3.1 x 108 
nucleotides, or bases. Diploid cells contain two copies of the genome, one inherited 
from each parent (to total 6.2 x 108 bases).

Linkage disequilibrium (LD): Correlations between nearby SNPs in the genome. LD 
patterns differ across genetic ancestries.
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Mendelian (or monogenic) condition: A condition or disorder that arises due to a 
change in DNA sequence in a single gene. Under normal environmental conditions, 
the altered DNA sequence is both necessary and sufficient for the condition to 
occur. This contrasts with complex polygenic phenotypes that arise due to the 
aggregate effects of many DNA sequence variants (each of small effect) and 
environmental factors.

Mendelian randomisation: A method that uses genetic variants (usually SNPS) as 
‘instrument variables’ to test for causal effects of environmental exposures on 
outcomes using observational data.

Missing heritability: The term given to the difference between twin-based heritability 
estimates for a given phenotype and the variance accounted for by genetic variants 
identified in a GWAS of the same phenotype. The missing component can be broken 
down into ‘hidden’ heritability, which is the difference between the genetic variants 
identified in a GWAS and the SNP-based heritability of the phenotype, and ‘still-
missing’ heritability, which is the difference between SNP-based heritability and twin 
heritability. Still-missing heritability is thought to be due to other types of DNA 
variants that are not captured in current GWASs, and to gene–gene and gene–
environment interaction effects. Hidden heritability can be recovered by increasing 
the sample size of the GWAS to find more genetic variants of (even smaller) effect.

Molecular genetic research: Rather than inferring genetic contributions to a 
phenotype by using individuals with varying degrees of relatedness (as in twin and 
adoption studies), DNA variation is studied directly and linked to measured differences 
between people for a phenotype. See also adoption studies and twin studies.

P-value: In GWASs, a p-value quantifies the probability of observing an association 
between a genetic variant and a phenotype by chance, assuming that no true 
relationship exists. A very small p-value (commonly less than 5 × 10-8) suggests that 
the observed association is unlikely to be due to chance and the null hypothesis of no 
association is rejected. 

Phenotype: Any measurable characteristic of an individual, for example a physical 
phenotype such as weight or height, cognitive phenotype such as intelligence, or 
behavioural phenotype such as aggression. Phenotypes may be classified as a 
diagnosable disorder (an individual either has conduct disorder or does not), or 
measured on a scale (individuals show different levels of aggressive behaviours). The 
term might be used interchangeably with ‘trait’. 

Pleiotropy: The phenomenon of a genetic variant influencing more than one 
phenotype. Broadly speaking, two main types of pleiotropy exist: (1) biological (also 
called horizontal) pleiotropy, where the DNA variant independently affects the two 
phenotypes, and (2) mediated (or vertical) pleiotropy, where the variant affects one 
phenotype, which in turn affects the second phenotype. When pleiotropy is observed 
it is difficult to figure out which scenario is the most likely without further research. 
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Polygenic index (PGI): A cumulative measure of an individual’s genetic propensity  
for a specific phenotype based on the weighted sum of many thousands of DNA 
variants distributed throughout the genome. PGIs for diagnosable medical conditions, 
such as cancer, tend to be referred to as polygenic risk scores (PRS) or polygenic 
scores (PGS).

Polygenicity (adjective: polygenic): The contribution of many DNA variants (thousands 
or tens of thousands) to the variation in a phenotype. 

Population stratification: This occurs when differences between populations in the 
frequency of genetic variants are correlated with environmental differences between 
populations by chance. If not properly accounted for, it can lead to spurious genetic 
associations in a GWAS. For example, if two populations are separated 
geographically, under certain conditions random genetic differences can accumulate 
over many generations. If a phenotype differs between these populations due to 
cultural, economic, social or broader environmental factors, it will appear in a GWAS 
as associated with the DNA variants that differ in frequency between the 
populations. If the patterns of genomic variation between the two populations are 
adjusted for, the association will disappear. 

Population-based GWAS: A GWAS performed on a cohort where individuals are 
assumed to be randomly drawn from the population and unrelated. Typically, any pairs 
of relatives closer than second cousins are identified and removed prior to analysis.

Randomised controlled trial: A prospective, comparative, quantitative study/
experiment performed under controlled conditions with random allocation of 
intervention(s) to comparison groups. The randomised controlled trial is the most 
rigorous and robust research method of determining whether a cause–effect relation 
exists between an intervention and an outcome.

Single nucleotide polymorphism (SNP; pronounced ‘snip’): A single-nucleotide  
(A, C, G or T) variation in the DNA sequence. SNPs are the most common type of 
genetic variation in human populations and usually consist of two alleles. They are 
easy to genotype at scale, making them the main type of genetic variation examined 
in GWASs. Not all SNPs impact gene function: a high proportion are located in the 
spaces between genes (i.e. in non-coding regions of the genome).

SNP microarray (also referred to as a SNP array or SNP chip): This is a laboratory 
technology used to genotype – determine the combination of alleles – an individual 
at many thousands of SNPs spread throughout the genome simultaneously. It is the 
most common technology used to generate genotype data for individuals analysed 
in a GWAS.
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Statistical power: This is a measure of how likely a study is to detect a real effect or 
difference if one truly exists. It is influenced by factors such as the study design, 
effect size, variability in the data, and sample size (number of research participants). 
In a well-powered GWAS, researchers are less likely to miss true differences in the 
frequency of an allele (a version of a DNA variant) between individuals with a 
condition (‘cases’) and those without it (‘controls’).

Twin studies: These examine twins raised in the same environment but who differ in 
genetic relatedness, to tease apart shared environmental and genetic influences on 
a phenotype. Monozygotic (MZ, or identical) twins develop from a single egg fertilised 
by a single sperm and share all of their genes, whereas dizygotic (DZ, or fraternal) 
twins share on average half of their genes. Assuming that both sets of twins have 
equally similar family/rearing environments, finding that MZ twins are more similar for 
a phenotype than DZ twins indicates genetic influence. See also adoption studies 
and molecular genetic studies.

Whole-exome sequencing (WES): This involves sequencing only the protein-coding 
regions of the genome (around 2% of all DNA bases).

Whole-genome sequencing (WGS): This refers to DNA sequencing of the entire 
genome, including both coding and non-coding regions.
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